Dirk Thiele, Olaf Prieske, Martijn Gäbler, Urs Granacher
{"title":"[Association between biological maturity, body constitution and physical fitness with performance on a rowing ergometer in elite youth female rowers].","authors":"Dirk Thiele, Olaf Prieske, Martijn Gäbler, Urs Granacher","doi":"10.1055/a-1532-4597","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is a gap in the literature regarding predictors of rowing performance in young rowers. Therefore, the aim of this study was to investigate associations between parameters of biological maturity, body constitution and physical fitness with rowing performance in young female elite rowers.</p><p><strong>Methods: </strong>A total of 26 female rowers aged 13.1 ± 0.5 years (maturity offset: + 2.2 ± 0.5 years from peak height velocity; training volume: 10 hours/week) volunteered to participate in this study. During the performance tests in March 2016/2017, biological maturity (e. g. maturity offset), body constitution (e. g. body height/mass, lean body mass, body fat mass) and physical fitness were assessed. Physical fitness tests included the assessment of muscle strength (1-RM bench pull, leg press, maximal handgrip strength), muscle power (standing long jump test), muscular endurance (trunk muscle endurance test [Bourban test]), dynamic balance (Y-balance test) and change-of-direction speed (multistage shuttle run). Finally, rowing performance was analysed using a 700-m rowing ergometer test. A linear regression analysis was computed for the models (1) biological maturity, (2) biological maturity and body constitution, and (3) biologic maturity, body constitution, and physical fitness.</p><p><strong>Results: </strong>The statistical analysis showed significant (p≤ 0.01) medium-to-large sized correlations (0.57 ≤r≤ 0.8) between biological maturity, body constitution (e. g. body height/mass, lean body mass) and physical fitness (e. g. 1-RM bench pull, maximal handgrip strength, Bourban test) with rowing performance. Model 3 with the predictors body constitution (i. e. lean mass) and muscular endurance (i. e. Bourban test) showed the largest explained variance for 700-m rowing ergometer performance (R² = 0.94, Akaike information criterion [AIC] = 82.1). Explained variance of model 3 was higher compared with model 1 (R² = 0.6, AIC = 131.5) and model 2 (R² = 0.63, AIC = 111.6).</p><p><strong>Conclusions: </strong>As a result of this study, coaches involved in junior rowing should focus on characteristics such as biological maturity, body constitution and physical fitness (muscle strength, muscular endurance) during talent development as these correlated highly with rowing ergometer performance.</p>","PeriodicalId":51169,"journal":{"name":"Sportverletzung-Sportschaden","volume":"37 3","pages":"116-125"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sportverletzung-Sportschaden","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1532-4597","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 2
Abstract
Background: There is a gap in the literature regarding predictors of rowing performance in young rowers. Therefore, the aim of this study was to investigate associations between parameters of biological maturity, body constitution and physical fitness with rowing performance in young female elite rowers.
Methods: A total of 26 female rowers aged 13.1 ± 0.5 years (maturity offset: + 2.2 ± 0.5 years from peak height velocity; training volume: 10 hours/week) volunteered to participate in this study. During the performance tests in March 2016/2017, biological maturity (e. g. maturity offset), body constitution (e. g. body height/mass, lean body mass, body fat mass) and physical fitness were assessed. Physical fitness tests included the assessment of muscle strength (1-RM bench pull, leg press, maximal handgrip strength), muscle power (standing long jump test), muscular endurance (trunk muscle endurance test [Bourban test]), dynamic balance (Y-balance test) and change-of-direction speed (multistage shuttle run). Finally, rowing performance was analysed using a 700-m rowing ergometer test. A linear regression analysis was computed for the models (1) biological maturity, (2) biological maturity and body constitution, and (3) biologic maturity, body constitution, and physical fitness.
Results: The statistical analysis showed significant (p≤ 0.01) medium-to-large sized correlations (0.57 ≤r≤ 0.8) between biological maturity, body constitution (e. g. body height/mass, lean body mass) and physical fitness (e. g. 1-RM bench pull, maximal handgrip strength, Bourban test) with rowing performance. Model 3 with the predictors body constitution (i. e. lean mass) and muscular endurance (i. e. Bourban test) showed the largest explained variance for 700-m rowing ergometer performance (R² = 0.94, Akaike information criterion [AIC] = 82.1). Explained variance of model 3 was higher compared with model 1 (R² = 0.6, AIC = 131.5) and model 2 (R² = 0.63, AIC = 111.6).
Conclusions: As a result of this study, coaches involved in junior rowing should focus on characteristics such as biological maturity, body constitution and physical fitness (muscle strength, muscular endurance) during talent development as these correlated highly with rowing ergometer performance.
期刊介绍:
Ihr Forum - Die Zeitschrift Sportverletzung-Sportschaden
Infos von A bis Z: Grundlagen, Prävention und Rehabilitation
Topaktuelle Themen: Abbildung der Verletzungen/Prävention bei Trendsportarten
Vielfältiges Spektrum: Physiotherapie, Wissenschaft und angewandte Forschung, neue Produkte und Hilfsmittel
Aktuelle Themen mit echtem Nutzwert
Sporttraumatologie: Prävention, Therapie, Rehabilitation
Sportphysiotherapie: Grundlagen, Biomechanik, Manuelle Therapie, Funktionelle Therapie, Trainingstherapie im Sport, Geräte, Trends