{"title":"Regulation of granulocyte colony-stimulating factor-induced hematopoietic stem cell mobilization by the sympathetic nervous system.","authors":"Tomohide Suzuki, Shinichi Ishii, Yoshio Katayama","doi":"10.1097/MOH.0000000000000764","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Granulocyte colony-stimulating factor (G-CSF) is now a standard agent to mobilize hematopoietic stem cells (HSCs) from the bone marrow to circulation. This review introduced mechanistic insights from the aspect of the sympathetic nervous system (SNS).</p><p><strong>Recent findings: </strong>Mobilization efficiency is determined by the balance between promotion and suppression pathways critically regulated by the SNS. G-CSF-induced high catecholaminergic tone promotes mobilization by (1) the strong suppression of osteolineage cells as a hematopoietic microenvironment and (2) fibroblast growth factor 23 production from erythroblasts, which inhibits CXCR4 function in HSCs. Simultaneously, SNS signals inhibit mobilization by (1) prostaglandin E2 production from mature neutrophils to induce osteopontin in osteoblasts to anchor HSCs and (2) angiopoietin-like protein 4 production from immature neutrophils via peroxisome proliferator-activated receptor δ to inhibit BM vascular permeability.</p><p><strong>Summary: </strong>We now know not only the regulatory mechanisms of G-CSF-induced mobilization but also the leads about unfavorable clinical phenomena, such as low-grade fever, bone pain, and poor mobilizers. Recent understanding of the mechanism will assist clinicians in the treatment for mobilization and researchers in the studies of the hidden potential of BM.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOH.0000000000000764","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Granulocyte colony-stimulating factor (G-CSF) is now a standard agent to mobilize hematopoietic stem cells (HSCs) from the bone marrow to circulation. This review introduced mechanistic insights from the aspect of the sympathetic nervous system (SNS).
Recent findings: Mobilization efficiency is determined by the balance between promotion and suppression pathways critically regulated by the SNS. G-CSF-induced high catecholaminergic tone promotes mobilization by (1) the strong suppression of osteolineage cells as a hematopoietic microenvironment and (2) fibroblast growth factor 23 production from erythroblasts, which inhibits CXCR4 function in HSCs. Simultaneously, SNS signals inhibit mobilization by (1) prostaglandin E2 production from mature neutrophils to induce osteopontin in osteoblasts to anchor HSCs and (2) angiopoietin-like protein 4 production from immature neutrophils via peroxisome proliferator-activated receptor δ to inhibit BM vascular permeability.
Summary: We now know not only the regulatory mechanisms of G-CSF-induced mobilization but also the leads about unfavorable clinical phenomena, such as low-grade fever, bone pain, and poor mobilizers. Recent understanding of the mechanism will assist clinicians in the treatment for mobilization and researchers in the studies of the hidden potential of BM.
期刊介绍:
Current Opinion in Hematology is an easy-to-digest bimonthly journal covering the most interesting and important advances in the field of hematology. Its hand-picked selection of editors ensure the highest quality selection of unbiased review articles on themes from nine key subject areas, including myeloid biology, Vascular biology, hematopoiesis and erythroid system and its diseases.