Facile decoration of fluorinated metal–organic frameworks on copper foil for regulated lithium deposition and robust solid electrolyte interface

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2023-08-30 DOI:10.1016/j.jcis.2023.08.187
Junfeng Chen , Yao Shen , Chunfeng Meng , Shuchen Huang , Haopeng Chen , Aihua Yuan , Jian Qiu , Hao Zhu , Hu Zhou
{"title":"Facile decoration of fluorinated metal–organic frameworks on copper foil for regulated lithium deposition and robust solid electrolyte interface","authors":"Junfeng Chen ,&nbsp;Yao Shen ,&nbsp;Chunfeng Meng ,&nbsp;Shuchen Huang ,&nbsp;Haopeng Chen ,&nbsp;Aihua Yuan ,&nbsp;Jian Qiu ,&nbsp;Hao Zhu ,&nbsp;Hu Zhou","doi":"10.1016/j.jcis.2023.08.187","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium metal is one of the most promising anode materials for Li-ion batteries. However, lithium metal anodes suffer from low coulomb efficiency, short cycle life, and even serious safety issues, owing to the incompatible Cu/Li interface and brittle solid electrolyte interface (SEI). A facile strategy is proposed to construct stable lithium metal anodes by regulating both the Cu/Li interface and SEI membrane with a thin layer of copper-tetrafluoroterephthalate (CuTFBDC), which can guide the uniform lithium deposition and the LiF-rich SEI. The prepared CuTFBDC@Cu foils can be applied as current collectors, and the assembled Li@CuTFBDC@Cu//Li symmetric cell exhibits a stable performance at a current density of 0.5 mA cm<sup>−2</sup> for more than 3000 h, with a small voltage hysteresis of less than 11.5 mV, surpassing that of the bare Cu foil. The assembled Li@CuTFBDC@Cu//LFP (LiFePO<sub>4</sub>) full cell proceeds smoothly for 200 cycles at a current density of 2 C with a specific capacity of 133.8 mAh/g, and the capacity can be maintained at 125.29 mAh/g after 250 cycles. This facile strategy can provide a solution for both the Cu/Li interface and SEI membrane, showing an excellent prospect for practical applications in lithium metal batteries.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"653 ","pages":"Pages 189-198"},"PeriodicalIF":9.4000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979723016752","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal is one of the most promising anode materials for Li-ion batteries. However, lithium metal anodes suffer from low coulomb efficiency, short cycle life, and even serious safety issues, owing to the incompatible Cu/Li interface and brittle solid electrolyte interface (SEI). A facile strategy is proposed to construct stable lithium metal anodes by regulating both the Cu/Li interface and SEI membrane with a thin layer of copper-tetrafluoroterephthalate (CuTFBDC), which can guide the uniform lithium deposition and the LiF-rich SEI. The prepared CuTFBDC@Cu foils can be applied as current collectors, and the assembled Li@CuTFBDC@Cu//Li symmetric cell exhibits a stable performance at a current density of 0.5 mA cm−2 for more than 3000 h, with a small voltage hysteresis of less than 11.5 mV, surpassing that of the bare Cu foil. The assembled Li@CuTFBDC@Cu//LFP (LiFePO4) full cell proceeds smoothly for 200 cycles at a current density of 2 C with a specific capacity of 133.8 mAh/g, and the capacity can be maintained at 125.29 mAh/g after 250 cycles. This facile strategy can provide a solution for both the Cu/Li interface and SEI membrane, showing an excellent prospect for practical applications in lithium metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氟化金属有机框架在铜箔上的简单装饰,用于调节锂沉积和坚固的固体电解质界面
锂金属是锂离子电池最有前途的负极材料之一。然而,由于Cu/Li界面不相容和固体电解质界面(SEI)脆弱,锂金属阳极存在库仑效率低、循环寿命短,甚至存在严重的安全问题。提出了一种通过四氟对苯二甲酸铜(cufbdc)薄层调控Cu/Li界面和SEI膜来构建稳定锂金属阳极的简单策略,该策略可以指导均匀锂沉积和富liff SEI。制备的CuTFBDC@Cu箔可以作为集流器,组装的Li@CuTFBDC@Cu//Li对称电池在0.5 mA cm−2的电流密度下表现出稳定的性能,持续时间超过3000 h,电压滞后小于11.5 mV,优于裸铜箔。组装的Li@CuTFBDC@Cu//LFP (LiFePO4)全电池在2c电流密度下可顺利进行200次循环,比容量为133.8 mAh/g,循环250次后容量可保持在125.29 mAh/g。这种简单的策略可以为Cu/Li界面和SEI膜提供解决方案,在锂金属电池的实际应用中显示出良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A double-confined strategy for enhancing the pseudocapacitance performance of nickel-based sulfides-unveiling aqueous pseudocapacitive energy storage mechanism. Enhanced photocatalytic H2O2 production via a facile atomic diffusion strategy near tammann temperature for single atom photocatalysts. Synergistic removal of chromium(VI) and tetracycline by porous carbon sponges embedded with MoS2: Performance and radical mechanism of piezoelectric catalysis. Molten salt synthesis of 1T phase dominated O-MoS2 for enhancing photocatalytic hydrogen production performance of CdS via Ohmic junction. Awakening n-π* electron transition in structurally distorted g-C3N4 nanosheets via hexamethylenetetramine-involved supercritical CO2 treatment towards efficient photocatalytic H2 production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1