Casey Schukow, Steven Christopher Smith, Eric Landgrebe, Surya Parasuraman, Olaleke Oluwasegun Folaranmi, Gladell P Paner, Mahul B Amin
{"title":"Application of ChatGPT in Routine Diagnostic Pathology: Promises, Pitfalls, and Potential Future Directions.","authors":"Casey Schukow, Steven Christopher Smith, Eric Landgrebe, Surya Parasuraman, Olaleke Oluwasegun Folaranmi, Gladell P Paner, Mahul B Amin","doi":"10.1097/PAP.0000000000000406","DOIUrl":null,"url":null,"abstract":"<p><p>Large Language Models are forms of artificial intelligence that use deep learning algorithms to decipher large amounts of text and exhibit strong capabilities like question answering and translation. Recently, an influx of Large Language Models has emerged in the medical and academic discussion, given their potential widespread application to improve patient care and provider workflow. One application that has gained notable recognition in the literature is ChatGPT, which is a natural language processing \"chatbot\" technology developed by the artificial intelligence development software company OpenAI. It learns from large amounts of text data to generate automated responses to inquiries in seconds. In health care and academia, chatbot systems like ChatGPT have gained much recognition recently, given their potential to become functional, reliable virtual assistants. However, much research is required to determine the accuracy, validity, and ethical concerns of the integration of ChatGPT and other chatbots into everyday practice. One such field where little information and research on the matter currently exists is pathology. Herein, we present a literature review of pertinent articles regarding the current status and understanding of ChatGPT and its potential application in routine diagnostic pathology. In this review, we address the promises, possible pitfalls, and future potential of this application. We provide examples of actual conversations conducted with the chatbot technology that mimic hypothetical but practical diagnostic pathology scenarios that may be encountered in routine clinical practice. On the basis of this experience, we observe that ChatGPT and other chatbots already have a remarkable ability to distill and summarize, within seconds, vast amounts of publicly available data and information to assist in laying a foundation of knowledge on a specific topic. We emphasize that, at this time, any use of such knowledge at the patient care level in clinical medicine must be carefully vetted through established sources of medical information and expertise. We suggest and anticipate that with the ever-expanding knowledge base required to reliably practice personalized, precision anatomic pathology, improved technologies like future versions of ChatGPT (and other chatbots) enabled by expanded access to reliable, diverse data, might serve as a key ally to the diagnostician. Such technology has real potential to further empower the time-honored paradigm of histopathologic diagnoses based on the integrative cognitive assessment of clinical, gross, and microscopic findings and ancillary immunohistochemical and molecular studies at a time of exploding biomedical knowledge.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAP.0000000000000406","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Large Language Models are forms of artificial intelligence that use deep learning algorithms to decipher large amounts of text and exhibit strong capabilities like question answering and translation. Recently, an influx of Large Language Models has emerged in the medical and academic discussion, given their potential widespread application to improve patient care and provider workflow. One application that has gained notable recognition in the literature is ChatGPT, which is a natural language processing "chatbot" technology developed by the artificial intelligence development software company OpenAI. It learns from large amounts of text data to generate automated responses to inquiries in seconds. In health care and academia, chatbot systems like ChatGPT have gained much recognition recently, given their potential to become functional, reliable virtual assistants. However, much research is required to determine the accuracy, validity, and ethical concerns of the integration of ChatGPT and other chatbots into everyday practice. One such field where little information and research on the matter currently exists is pathology. Herein, we present a literature review of pertinent articles regarding the current status and understanding of ChatGPT and its potential application in routine diagnostic pathology. In this review, we address the promises, possible pitfalls, and future potential of this application. We provide examples of actual conversations conducted with the chatbot technology that mimic hypothetical but practical diagnostic pathology scenarios that may be encountered in routine clinical practice. On the basis of this experience, we observe that ChatGPT and other chatbots already have a remarkable ability to distill and summarize, within seconds, vast amounts of publicly available data and information to assist in laying a foundation of knowledge on a specific topic. We emphasize that, at this time, any use of such knowledge at the patient care level in clinical medicine must be carefully vetted through established sources of medical information and expertise. We suggest and anticipate that with the ever-expanding knowledge base required to reliably practice personalized, precision anatomic pathology, improved technologies like future versions of ChatGPT (and other chatbots) enabled by expanded access to reliable, diverse data, might serve as a key ally to the diagnostician. Such technology has real potential to further empower the time-honored paradigm of histopathologic diagnoses based on the integrative cognitive assessment of clinical, gross, and microscopic findings and ancillary immunohistochemical and molecular studies at a time of exploding biomedical knowledge.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.