Hamdi Mohamed Isse, Robert Lukande, Senai Goitom Sereke, Fualal Jane Odubu, Rita Nassanga, Samuel Bugeza
{"title":"Correlation of the ultrasound thyroid imaging reporting and data system with cytology findings among patients in Uganda.","authors":"Hamdi Mohamed Isse, Robert Lukande, Senai Goitom Sereke, Fualal Jane Odubu, Rita Nassanga, Samuel Bugeza","doi":"10.1186/s13044-023-00169-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ultrasonography is a noninvasive modality for the initial assessment of thyroid nodules. The American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) has demonstrated good performance in differentiating malignant thyroid nodules. However, the combination of ACR TI-RADS categories and cytology has not been studied extensively, in Uganda. The study aims to correlate ACR TI-RADS with cytology among patients referred for US-guided fine-needle aspiration at Mulago National Referral Hospital.</p><p><strong>Methods: </strong>This was a hospital-based cross-sectional study that recruited 132 patients with thyroid nodules. Spearman's correlation was used to establish a relationship between TI-RADS and cytology findings. The diagnostic accuracy of TI-RADS was assessed using sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios.</p><p><strong>Results: </strong>Of 132 study participants, 90% (n = 117) were females, and the mean age was 41 ± 13 years. One hundred sixty-one thyroid nodules were analyzed. More than half of the thyroid nodules (54.7%, n = 87) were solid or almost solid, 96.9% (n = 154) were shaped wider than tall, 57.2% (n = 91) had smooth margins, 83.7% (n = 133) were hyperechoic or isoechoic, and 88.7% (n = 141) had no echogenic foci. TI-RADS 3 was the most common at 42.9% (n = 69). The proportions of malignancy for TI-RADS 4 and TI-RADS 5 were 73.3% and 85.7%, respectively. The correlation between ACR TI-RADS and the Bethesda system of thyroid classification scores was r = 0.577. The sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios of ACR TI-RADS were 90.9%, 98.5%, 90%, 99.3%, 62.3, and 0.1, respectively.</p><p><strong>Conclusion: </strong>We found that ACR TI-RADS classification is an appropriate and noninvasive method for assessing thyroid nodules in routine practice. It can safely reduce the number of unnecessary fine-needle aspiration in a significant proportion of benign thyroid lesions. Thyroid nodules classified as TI-RADS 3 should be followed routinely. ACR TI-RADS should be standardized as the screening tool in resource-limited areas.</p>","PeriodicalId":39048,"journal":{"name":"Thyroid Research","volume":"16 1","pages":"26"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thyroid Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13044-023-00169-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ultrasonography is a noninvasive modality for the initial assessment of thyroid nodules. The American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) has demonstrated good performance in differentiating malignant thyroid nodules. However, the combination of ACR TI-RADS categories and cytology has not been studied extensively, in Uganda. The study aims to correlate ACR TI-RADS with cytology among patients referred for US-guided fine-needle aspiration at Mulago National Referral Hospital.
Methods: This was a hospital-based cross-sectional study that recruited 132 patients with thyroid nodules. Spearman's correlation was used to establish a relationship between TI-RADS and cytology findings. The diagnostic accuracy of TI-RADS was assessed using sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios.
Results: Of 132 study participants, 90% (n = 117) were females, and the mean age was 41 ± 13 years. One hundred sixty-one thyroid nodules were analyzed. More than half of the thyroid nodules (54.7%, n = 87) were solid or almost solid, 96.9% (n = 154) were shaped wider than tall, 57.2% (n = 91) had smooth margins, 83.7% (n = 133) were hyperechoic or isoechoic, and 88.7% (n = 141) had no echogenic foci. TI-RADS 3 was the most common at 42.9% (n = 69). The proportions of malignancy for TI-RADS 4 and TI-RADS 5 were 73.3% and 85.7%, respectively. The correlation between ACR TI-RADS and the Bethesda system of thyroid classification scores was r = 0.577. The sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios of ACR TI-RADS were 90.9%, 98.5%, 90%, 99.3%, 62.3, and 0.1, respectively.
Conclusion: We found that ACR TI-RADS classification is an appropriate and noninvasive method for assessing thyroid nodules in routine practice. It can safely reduce the number of unnecessary fine-needle aspiration in a significant proportion of benign thyroid lesions. Thyroid nodules classified as TI-RADS 3 should be followed routinely. ACR TI-RADS should be standardized as the screening tool in resource-limited areas.