Mobile Sensing in the COVID-19 Era: A Review.

Health data science Pub Date : 2022-08-08 eCollection Date: 2022-01-01 DOI:10.34133/2022/9830476
Zhiyuan Wang, Haoyi Xiong, Mingyue Tang, Mehdi Boukhechba, Tabor E Flickinger, Laura E Barnes
{"title":"Mobile Sensing in the COVID-19 Era: A Review.","authors":"Zhiyuan Wang, Haoyi Xiong, Mingyue Tang, Mehdi Boukhechba, Tabor E Flickinger, Laura E Barnes","doi":"10.34133/2022/9830476","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During the COVID-19 pandemic, mobile sensing and data analytics techniques have demonstrated their capabilities in monitoring the trajectories of the pandemic, by collecting behavioral, physiological, and mobility data on individual, neighborhood, city, and national scales. Notably, mobile sensing has become a promising way to detect individuals' infectious status, track the change in long-term health, trace the epidemics in communities, and monitor the evolution of viruses and subspecies.</p><p><strong>Methods: </strong>We followed the PRISMA practice and reviewed 60 eligible papers on mobile sensing for monitoring COVID-19. We proposed a taxonomy system to summarize literature by the <i>time duration</i> and <i>population scale</i> under mobile sensing studies.</p><p><strong>Results: </strong>We found that existing literature can be naturally grouped in <i>four clusters</i>, including <i>remote detection</i>, <i>long-term tracking</i>, <i>contact tracing</i>, and <i>epidemiological study</i>. We summarized each group and analyzed representative works with regard to the system design, health outcomes, and limitations on techniques and societal factors. We further discussed the implications and future directions of mobile sensing in communicable diseases from the perspectives of technology and applications.</p><p><strong>Conclusion: </strong>Mobile sensing techniques are effective, efficient, and flexible to surveil COVID-19 in scales of time and populations. In the post-COVID era, technical and societal issues in mobile sensing are expected to be addressed to improve healthcare and social outcomes.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":"2022 ","pages":"9830476"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9830476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: During the COVID-19 pandemic, mobile sensing and data analytics techniques have demonstrated their capabilities in monitoring the trajectories of the pandemic, by collecting behavioral, physiological, and mobility data on individual, neighborhood, city, and national scales. Notably, mobile sensing has become a promising way to detect individuals' infectious status, track the change in long-term health, trace the epidemics in communities, and monitor the evolution of viruses and subspecies.

Methods: We followed the PRISMA practice and reviewed 60 eligible papers on mobile sensing for monitoring COVID-19. We proposed a taxonomy system to summarize literature by the time duration and population scale under mobile sensing studies.

Results: We found that existing literature can be naturally grouped in four clusters, including remote detection, long-term tracking, contact tracing, and epidemiological study. We summarized each group and analyzed representative works with regard to the system design, health outcomes, and limitations on techniques and societal factors. We further discussed the implications and future directions of mobile sensing in communicable diseases from the perspectives of technology and applications.

Conclusion: Mobile sensing techniques are effective, efficient, and flexible to surveil COVID-19 in scales of time and populations. In the post-COVID era, technical and societal issues in mobile sensing are expected to be addressed to improve healthcare and social outcomes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19 时代的移动传感:回顾。
背景:在 COVID-19 大流行期间,移动传感和数据分析技术通过收集个人、社区、城市和全国范围内的行为、生理和移动数据,展示了其监测大流行轨迹的能力。值得注意的是,移动传感已成为检测个人感染状况、跟踪长期健康变化、追踪社区流行病以及监测病毒和亚种演变的一种有前途的方法:方法:我们遵循 PRISMA 法,对 60 篇符合条件的关于移动传感监测 COVID-19 的论文进行了综述。我们提出了一个分类系统,按照移动传感研究的时间跨度和种群规模对文献进行归纳:结果:我们发现现有文献可自然分为四组,包括远程检测、长期跟踪、接触追踪和流行病学研究。我们对每一组进行了总结,并从系统设计、健康结果、技术限制和社会因素等方面分析了具有代表性的作品。我们还从技术和应用的角度进一步探讨了移动传感技术在传染病领域的意义和未来发展方向:移动传感技术在时间和人群尺度上对 COVID-19 进行调查是有效、高效和灵活的。在后 COVID 时代,移动传感的技术和社会问题有望得到解决,以改善医疗保健和社会成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Multi-Modal CLIP-Informed Protein Editing. The Burden of Type 2 Diabetes in Adolescents and Young Adults in China: A Secondary Analysis from the Global Burden of Disease Study 2021. Federated Learning in Healthcare: A Benchmark Comparison of Engineering and Statistical Approaches for Structured Data Analysis. Robust Meta-Model for Predicting the Likelihood of Receiving Blood Transfusion in Non-traumatic Intensive Care Unit Patients. Survival Disparities among Cancer Patients Based on Mobility Patterns: A Population-Based Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1