{"title":"A novel risk variant block across introns 36-45 of CACNA1C for schizophrenia: a cohort-wise replication and cerebral region-wide validation study.","authors":"Xiaoyun Guo, Shibin Wang, Xiandong Lin, Zuxing Wang, Yikai Dou, Yuping Cao, Yong Zhang, Xinqun Luo, Longli Kang, Ting Yu, Zhiren Wang, Yunlong Tan, Shenshen Gao, Hangxiao Zheng, Fen Zhao, Huifen Wang, Kesheng Wang, Fan Xie, Wenzhong Chen, Xingguang Luo","doi":"10.1097/YPG.0000000000000344","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Numerous genome-wide association studies have identified CACNA1C as one of the top risk genes for schizophrenia. As a necessary post-genome-wide association study (GWAS) follow-up, here, we focused on this risk gene, carefully investigated its novel risk variants for schizophrenia, and explored their potential functions.</p><p><strong>Methods: </strong>We analyzed four independent samples (including three European and one African-American) comprising 5648 cases and 6936 healthy subjects to identify replicable single nucleotide polymorphism-schizophrenia associations. The potential regulatory effects of schizophrenia-risk alleles on CACNA1C mRNA expression in 16 brain regions (n = 348), gray matter volumes (GMVs) of five subcortical structures (n = 34 431), and surface areas and thickness of 34 cortical regions (n = 36 936) were also examined.</p><p><strong>Results: </strong>A novel 17-variant block across introns 36-45 of CACNA1C was significantly associated with schizophrenia in the same effect direction across at least two independent samples (1.8 × 10-4 ≤ P ≤ 0.049). Most risk variants within this block showed significant associations with CACNA1C mRNA expression (1.6 × 10-3 ≤ P ≤ 0.050), GMVs of subcortical structures (0.016 ≤ P ≤ 0.048), cortical surface areas (0.010 ≤ P ≤ 0.050), and thickness (0.004 ≤ P ≤ 0.050) in multiple brain regions.</p><p><strong>Conclusion: </strong>We have identified a novel and functional risk variant block at CACNA1C for schizophrenia, providing further evidence for the important role of this gene in the pathogenesis of schizophrenia.</p>","PeriodicalId":20734,"journal":{"name":"Psychiatric Genetics","volume":"33 5","pages":"182-190"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatric Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/YPG.0000000000000344","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Numerous genome-wide association studies have identified CACNA1C as one of the top risk genes for schizophrenia. As a necessary post-genome-wide association study (GWAS) follow-up, here, we focused on this risk gene, carefully investigated its novel risk variants for schizophrenia, and explored their potential functions.
Methods: We analyzed four independent samples (including three European and one African-American) comprising 5648 cases and 6936 healthy subjects to identify replicable single nucleotide polymorphism-schizophrenia associations. The potential regulatory effects of schizophrenia-risk alleles on CACNA1C mRNA expression in 16 brain regions (n = 348), gray matter volumes (GMVs) of five subcortical structures (n = 34 431), and surface areas and thickness of 34 cortical regions (n = 36 936) were also examined.
Results: A novel 17-variant block across introns 36-45 of CACNA1C was significantly associated with schizophrenia in the same effect direction across at least two independent samples (1.8 × 10-4 ≤ P ≤ 0.049). Most risk variants within this block showed significant associations with CACNA1C mRNA expression (1.6 × 10-3 ≤ P ≤ 0.050), GMVs of subcortical structures (0.016 ≤ P ≤ 0.048), cortical surface areas (0.010 ≤ P ≤ 0.050), and thickness (0.004 ≤ P ≤ 0.050) in multiple brain regions.
Conclusion: We have identified a novel and functional risk variant block at CACNA1C for schizophrenia, providing further evidence for the important role of this gene in the pathogenesis of schizophrenia.
期刊介绍:
The journal aims to publish papers which bring together clinical observations, psychological and behavioural abnormalities and genetic data. All papers are fully refereed.
Psychiatric Genetics is also a forum for reporting new approaches to genetic research in psychiatry and neurology utilizing novel techniques or methodologies. Psychiatric Genetics publishes original Research Reports dealing with inherited factors involved in psychiatric and neurological disorders. This encompasses gene localization and chromosome markers, changes in neuronal gene expression related to psychiatric disease, linkage genetics analyses, family, twin and adoption studies, and genetically based animal models of neuropsychiatric disease. The journal covers areas such as molecular neurobiology and molecular genetics relevant to mental illness.
Reviews of the literature and Commentaries in areas of current interest will be considered for publication. Reviews and Commentaries in areas outside psychiatric genetics, but of interest and importance to Psychiatric Genetics, will also be considered.
Psychiatric Genetics also publishes Book Reviews, Brief Reports and Conference Reports.