{"title":"Theory of Allosteric Regulation in Hsp70 Molecular Chaperones.","authors":"Wayne A Hendrickson","doi":"10.1017/qrd.2020.10","DOIUrl":null,"url":null,"abstract":"<p><p>Heat-shock proteins of 70 kDa (Hsp70s) are ubiquitous molecular chaperones that function in protein folding as well as other vital cellular processes. They bind and hydrolyze ATP in a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides in a substrate-binding domain (SBD). However, the molecular mechanism for this allosteric action has remained unclear. Here, we develop and experimentally quantify a theoretical model for Hsp70 allostery based on equilibria among Hsp70 conformational states. We postulate that, when bound to ATP, Hsp70 is in equilibrium between a restraining state (R) that restricts ATP hydrolysis and binds peptides poorly, if at all, and a stimulating state (S) that hydrolyzes ATP relatively rapidly and has high intrinsic substrate affinity but rapid binding kinetics; after the hydrolysis to ADP, NBD and SBD disengage into an uncoupled state (U) that binds peptide substrates tightly, but now with slow kinetics of exchange.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"1 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/qrd.2020.10","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2020.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5
Abstract
Heat-shock proteins of 70 kDa (Hsp70s) are ubiquitous molecular chaperones that function in protein folding as well as other vital cellular processes. They bind and hydrolyze ATP in a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides in a substrate-binding domain (SBD). However, the molecular mechanism for this allosteric action has remained unclear. Here, we develop and experimentally quantify a theoretical model for Hsp70 allostery based on equilibria among Hsp70 conformational states. We postulate that, when bound to ATP, Hsp70 is in equilibrium between a restraining state (R) that restricts ATP hydrolysis and binds peptides poorly, if at all, and a stimulating state (S) that hydrolyzes ATP relatively rapidly and has high intrinsic substrate affinity but rapid binding kinetics; after the hydrolysis to ADP, NBD and SBD disengage into an uncoupled state (U) that binds peptide substrates tightly, but now with slow kinetics of exchange.