Open datasets in perioperative medicine: a narrative review.

Anesthesia and pain medicine Pub Date : 2023-07-01 Epub Date: 2023-07-26 DOI:10.17085/apm.23076
Leerang Lim, Hyung-Chul Lee
{"title":"Open datasets in perioperative medicine: a narrative review.","authors":"Leerang Lim, Hyung-Chul Lee","doi":"10.17085/apm.23076","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing interest of researchers in machine learning and artificial intelligence (AI) based on large data, their roles in medical research have become increasingly prominent. Despite the proliferation of predictive models in perioperative medicine, external validation is lacking. Open datasets, defined as publicly available datasets for research, play a crucial role by providing high-quality data, facilitating collaboration, and allowing an objective evaluation of the developed models. Among the available datasets for surgical patients, VitalDB has been the most widely used, with the Medical Informatics Operating Room Vitals and Events Repository recently launched and the Informative Surgical Patient dataset for Innovative Research Environment expected to be released soon. For critically ill patients, the available resources include the Medical Information Mart for Intensive Care, the eICU Collaborative Research Database, the Amsterdam University Medical Centers Database, and the High time Resolution ICU Dataset, with the anticipated release of the Intensive Care Network with Million Patients' information for the AI Clinical decision support system Technology dataset. This review presents a detailed comparison of each to enrich our understanding of these open datasets for data science and AI research in perioperative medicine.</p>","PeriodicalId":7801,"journal":{"name":"Anesthesia and pain medicine","volume":"18 3","pages":"213-219"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ee/4d/apm-23076.PMC10410546.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anesthesia and pain medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17085/apm.23076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing interest of researchers in machine learning and artificial intelligence (AI) based on large data, their roles in medical research have become increasingly prominent. Despite the proliferation of predictive models in perioperative medicine, external validation is lacking. Open datasets, defined as publicly available datasets for research, play a crucial role by providing high-quality data, facilitating collaboration, and allowing an objective evaluation of the developed models. Among the available datasets for surgical patients, VitalDB has been the most widely used, with the Medical Informatics Operating Room Vitals and Events Repository recently launched and the Informative Surgical Patient dataset for Innovative Research Environment expected to be released soon. For critically ill patients, the available resources include the Medical Information Mart for Intensive Care, the eICU Collaborative Research Database, the Amsterdam University Medical Centers Database, and the High time Resolution ICU Dataset, with the anticipated release of the Intensive Care Network with Million Patients' information for the AI Clinical decision support system Technology dataset. This review presents a detailed comparison of each to enrich our understanding of these open datasets for data science and AI research in perioperative medicine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
围术期医学中的开放数据集:叙述性综述。
随着研究人员对基于大数据的机器学习和人工智能(AI)的兴趣与日俱增,它们在医学研究中的作用也日益突出。尽管围术期医学中的预测模型层出不穷,但却缺乏外部验证。开放数据集被定义为公开可用的研究数据集,通过提供高质量数据、促进合作以及对已开发模型进行客观评估,开放数据集发挥着至关重要的作用。在手术患者的可用数据集中,VitalDB 的使用最为广泛,医疗信息学手术室生命体征和事件库最近也已启动,创新研究环境的外科患者信息数据集预计也将很快发布。对于重症患者,现有资源包括重症监护医疗信息市场、eICU 合作研究数据库、阿姆斯特丹大学医疗中心数据库和高分辨率重症监护室数据集,预计将发布重症监护网络百万患者信息人工智能临床决策支持系统技术数据集。本综述将对每个数据集进行详细比较,以丰富我们对这些开放数据集的了解,从而促进围术期医学中的数据科学和人工智能研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anesthetic neurotoxicity in the developing brain: an update on theinsights and implications for fetal surgery Extubation and removal of supraglottic airway devices in pediatric anesthesia Relationship between intraoperative requirement for anesthetics and postoperative analgesic consumption in laparoscopic colectomy: a randomized controlled double-blinded study Opioid-free anesthesia using a combination of ketamine and dexmedetomidine in patients undergoing laparoscopic cholecystectomy: a randomized controlled trial How does circadian rhythm affect postoperative pain after pediatric acute appendicitis surgery?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1