Christoph Beger, Anna Maria Boehmer, Beate Mussawy, Louisa Redeker, Franz Matthies, Ralph Schäfermeier, Annette Härdtlein, Tobias Dreischulte, Daniel Neumann, Alexandr Uciteli
{"title":"Modelling Adverse Events with the TOP Phenotyping Framework.","authors":"Christoph Beger, Anna Maria Boehmer, Beate Mussawy, Louisa Redeker, Franz Matthies, Ralph Schäfermeier, Annette Härdtlein, Tobias Dreischulte, Daniel Neumann, Alexandr Uciteli","doi":"10.3233/SHTI230695","DOIUrl":null,"url":null,"abstract":"<p><p>The detection and prevention of medication-related health risks, such as medication-associated adverse events (AEs), is a major challenge in patient care. A systematic review on the incidence and nature of in-hospital AEs found that 9.2% of hospitalised patients suffer an AE, and approximately 43% of these AEs are considered to be preventable. Adverse events can be identified using algorithms that operate on electronic medical records (EMRs) and research databases. Such algorithms normally consist of structured filter criteria and rules to identify individuals with certain phenotypic traits, thus are referred to as phenotype algorithms. Many attempts have been made to create tools that support the development of algorithms and their application to EMRs. However, there are still gaps in terms of functionalities of such tools, such as standardised representation of algorithms and complex Boolean and temporal logic. In this work, we focus on the AE delirium, an acute brain disorder affecting mental status and attention, thus not trivial to operationalise in EMR data. We use this AE as an example to demonstrate the modelling process in our ontology-based framework (TOP Framework) for modelling and executing phenotype algorithms. The resulting semantically modelled delirium phenotype algorithm is independent of data structure, query languages and other technical aspects, and can be run on a variety of source systems in different institutions.</p>","PeriodicalId":39242,"journal":{"name":"Studies in Health Technology and Informatics","volume":"307 ","pages":"69-77"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Health Technology and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI230695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
The detection and prevention of medication-related health risks, such as medication-associated adverse events (AEs), is a major challenge in patient care. A systematic review on the incidence and nature of in-hospital AEs found that 9.2% of hospitalised patients suffer an AE, and approximately 43% of these AEs are considered to be preventable. Adverse events can be identified using algorithms that operate on electronic medical records (EMRs) and research databases. Such algorithms normally consist of structured filter criteria and rules to identify individuals with certain phenotypic traits, thus are referred to as phenotype algorithms. Many attempts have been made to create tools that support the development of algorithms and their application to EMRs. However, there are still gaps in terms of functionalities of such tools, such as standardised representation of algorithms and complex Boolean and temporal logic. In this work, we focus on the AE delirium, an acute brain disorder affecting mental status and attention, thus not trivial to operationalise in EMR data. We use this AE as an example to demonstrate the modelling process in our ontology-based framework (TOP Framework) for modelling and executing phenotype algorithms. The resulting semantically modelled delirium phenotype algorithm is independent of data structure, query languages and other technical aspects, and can be run on a variety of source systems in different institutions.
期刊介绍:
This book series was started in 1990 to promote research conducted under the auspices of the EC programmes’ Advanced Informatics in Medicine (AIM) and Biomedical and Health Research (BHR) bioengineering branch. A driving aspect of international health informatics is that telecommunication technology, rehabilitative technology, intelligent home technology and many other components are moving together and form one integrated world of information and communication media.