Signaling Pathways of the Insulin-like Growth Factor Binding Proteins.

IF 22 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Endocrine reviews Pub Date : 2023-09-15 DOI:10.1210/endrev/bnad008
Robert C Baxter
{"title":"Signaling Pathways of the Insulin-like Growth Factor Binding Proteins.","authors":"Robert C Baxter","doi":"10.1210/endrev/bnad008","DOIUrl":null,"url":null,"abstract":"<p><p>The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":"44 5","pages":"753-778"},"PeriodicalIF":22.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502586/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endrev/bnad008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 4

Abstract

The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胰岛素样生长因子结合蛋白的信号通路。
6种高亲和力胰岛素样生长因子结合蛋白(igfbp)是通过多种途径调节细胞信号传导的多功能蛋白。它们在细胞水平上的典型功能是阻碍胰岛素样生长因子(IGF)-1和IGF-2进入其主要受体IGF1R,但igfbp也可以通过其自身的翻译后修饰(如磷酸化或有限的蛋白质水解)或通过与其他调节蛋白的相互作用来抑制或有时增强IGF1R信号。除了调节IGF1R活性外,igfbp还通过似乎不涉及IGF-IGF1R系统的机制调节细胞存活、迁移、代谢和其他功能。这是通过与整合素、转化生长因子β家族受体和其他细胞表面蛋白以及作为多种途径中间体的细胞内配体直接或功能性地相互作用来实现的。在细胞核内,igfbp可以调节II类核激素受体的多种功能,并通过非同源末端连接途径在细胞衰老和DNA损伤修复中发挥作用,从而可能改变某些癌症治疗药物的疗效。它们还能调节某些免疫功能,并可能在类风湿性关节炎等自身免疫性疾病中发挥作用。igfbp已被认为是有吸引力的治疗靶点,但它们在循环和细胞水平上的普遍存在带来了许多挑战。通过了解igfbp相互作用的调节途径的多样性,可能仍然存在基于igfbp依赖性信号调节的治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Endocrine reviews
Endocrine reviews 医学-内分泌学与代谢
CiteScore
42.00
自引率
1.00%
发文量
29
期刊介绍: Endocrine Reviews, published bimonthly, features concise timely reviews updating key mechanistic and clinical concepts, alongside comprehensive, authoritative articles covering both experimental and clinical endocrinology themes. The journal considers topics informing clinical practice based on emerging and established evidence from clinical research. It also reviews advances in endocrine science stemming from studies in cell biology, immunology, pharmacology, genetics, molecular biology, neuroscience, reproductive medicine, and pediatric endocrinology.
期刊最新文献
Current Challenges and Future Directions in the Assessment of Glucocorticoid Status. Teprotumumab for the Treatment of Thyroid Eye Disease. Common and Uncommon Mouse Models of Growth Hormone Deficiency. Risks of Iodine Excess. Molecular Developments in Parasellar Tumors and Potential Therapeutic Implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1