Farshad Safaei, Javad Farimaneh, Ali Rajabi Mohammad Abad, Ehsan Iranmanesh, Fatemeh Arabpour, Farzad Doostishoar, Zahra Taherizadeh
{"title":"The effect of silver nanoparticles on learning and memory in rodents: \"a systematic review\".","authors":"Farshad Safaei, Javad Farimaneh, Ali Rajabi Mohammad Abad, Ehsan Iranmanesh, Fatemeh Arabpour, Farzad Doostishoar, Zahra Taherizadeh","doi":"10.1186/s12995-023-00381-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Silver nanoparticles (AgNPs) are widely used in medicine owing to their antiseptic activity and inducing cell death. Despite AgNPs' importance in nano-engineering and medical benefits, animal studies have shown silver toxicity can damage multiple organs such as the lungs, liver, kidneys, intestines, and brain. Several investigations revealed the correlation between Ag administration by different methods with impaired cognitive and behavioral abilities. Therefore, this systematic review aimed to conclude on the existing evidence of impairments in learning and memory that were changed in rodents exposed to AgNPs.</p><p><strong>Methods: </strong>Main searches were retrieved in Google Scholar, Scopus, Web of Science, and PubMed databases from 1979 to 2022. Eligibility Criteria were applied to select and extract 15 articles among 892.</p><p><strong>Results: </strong>Learning and memory abilities of rats and mice in screened studies were evaluated with MWM, NORT, PAL, T-maze, Y-maze, contextual fear conditioning, Radial Arm Maze and Carousel Maze test. Data have shown various sizes from 10 to 100 nm could affect the results of tests among animals exposed to AgNPs compared with control animals. However, in some treatments, results achieved from tests have not demonstrated significant differences between control and treated groups.</p><p><strong>Conclusion: </strong>Studies have revealed that treatment with Ag-NPs of different sizes can impair learning and memory skills in rats and mice.</p>","PeriodicalId":48903,"journal":{"name":"Journal of Occupational Medicine and Toxicology","volume":"18 1","pages":"15"},"PeriodicalIF":2.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391766/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational Medicine and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12995-023-00381-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Silver nanoparticles (AgNPs) are widely used in medicine owing to their antiseptic activity and inducing cell death. Despite AgNPs' importance in nano-engineering and medical benefits, animal studies have shown silver toxicity can damage multiple organs such as the lungs, liver, kidneys, intestines, and brain. Several investigations revealed the correlation between Ag administration by different methods with impaired cognitive and behavioral abilities. Therefore, this systematic review aimed to conclude on the existing evidence of impairments in learning and memory that were changed in rodents exposed to AgNPs.
Methods: Main searches were retrieved in Google Scholar, Scopus, Web of Science, and PubMed databases from 1979 to 2022. Eligibility Criteria were applied to select and extract 15 articles among 892.
Results: Learning and memory abilities of rats and mice in screened studies were evaluated with MWM, NORT, PAL, T-maze, Y-maze, contextual fear conditioning, Radial Arm Maze and Carousel Maze test. Data have shown various sizes from 10 to 100 nm could affect the results of tests among animals exposed to AgNPs compared with control animals. However, in some treatments, results achieved from tests have not demonstrated significant differences between control and treated groups.
Conclusion: Studies have revealed that treatment with Ag-NPs of different sizes can impair learning and memory skills in rats and mice.
期刊介绍:
Aimed at clinicians and researchers, the Journal of Occupational Medicine and Toxicology is a multi-disciplinary, open access journal which publishes original research on the clinical and scientific aspects of occupational and environmental health.
With high-quality peer review and quick decision times, we welcome submissions on the diagnosis, prevention, management, and scientific analysis of occupational diseases, injuries, and disability. The journal also covers the promotion of health of workers, their families, and communities, and ranges from rehabilitation to tropical medicine and public health aspects.