dRFEtools: dynamic recursive feature elimination for omics.

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Bioinformatics Pub Date : 2023-08-01 DOI:10.1093/bioinformatics/btad513
Kynon J M Benjamin, Tarun Katipalli, Apuã C M Paquola
{"title":"dRFEtools: dynamic recursive feature elimination for omics.","authors":"Kynon J M Benjamin,&nbsp;Tarun Katipalli,&nbsp;Apuã C M Paquola","doi":"10.1093/bioinformatics/btad513","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Advances in technology have generated larger omics datasets with potential applications for machine learning. In many datasets, however, cost and limited sample availability result in an excessively higher number of features as compared to observations. Moreover, biological processes are associated with networks of core and peripheral genes, while traditional feature selection approaches capture only core genes.</p><p><strong>Results: </strong>To overcome these limitations, we present dRFEtools that implements dynamic recursive feature elimination (RFE), reducing computational time with high accuracy compared to standard RFE, expanding dynamic RFE to regression algorithms, and outputting the subsets of features that hold predictive power with and without peripheral features. dRFEtools integrates with scikit-learn (the popular Python machine learning platform) and thus provides new opportunities for dynamic RFE in large-scale omics data while enhancing its interpretability.</p><p><strong>Availability and implementation: </strong>dRFEtools is freely available on PyPI at https://pypi.org/project/drfetools/ or on GitHub https://github.com/LieberInstitute/dRFEtools, implemented in Python 3, and supported on Linux, Windows, and Mac OS.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471895/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad513","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Motivation: Advances in technology have generated larger omics datasets with potential applications for machine learning. In many datasets, however, cost and limited sample availability result in an excessively higher number of features as compared to observations. Moreover, biological processes are associated with networks of core and peripheral genes, while traditional feature selection approaches capture only core genes.

Results: To overcome these limitations, we present dRFEtools that implements dynamic recursive feature elimination (RFE), reducing computational time with high accuracy compared to standard RFE, expanding dynamic RFE to regression algorithms, and outputting the subsets of features that hold predictive power with and without peripheral features. dRFEtools integrates with scikit-learn (the popular Python machine learning platform) and thus provides new opportunities for dynamic RFE in large-scale omics data while enhancing its interpretability.

Availability and implementation: dRFEtools is freely available on PyPI at https://pypi.org/project/drfetools/ or on GitHub https://github.com/LieberInstitute/dRFEtools, implemented in Python 3, and supported on Linux, Windows, and Mac OS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
dRFEtools:组学的动态递归特征消除。
动机:技术的进步产生了更大的组学数据集,具有机器学习的潜在应用。然而,在许多数据集中,与观测值相比,成本和有限的样本可用性导致特征数量过多。此外,生物过程与核心和外围基因网络有关,而传统的特征选择方法只捕获核心基因。结果:为了克服这些限制,我们提出了实现动态递归特征消除(RFE)的dRFEtools,与标准RFE相比,它以高精度减少了计算时间,将动态RFE扩展到回归算法,并输出具有或不具有外围特征的预测能力的特征子集。dRFEtools与scikit-learn(流行的Python机器学习平台)集成,从而为大规模组学数据中的动态RFE提供了新的机会,同时增强了其可解释性。可用性和实现:dRFEtools在PyPI (https://pypi.org/project/drfetools/)或GitHub https://github.com/LieberInstitute/dRFEtools上免费提供,在Python 3中实现,并支持Linux, Windows和Mac OS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
期刊最新文献
MEHunter: Transformer-based mobile element variant detection from long reads Metabolic syndrome may be more frequent in treatment-naive sarcoidosis patients. Coracle—A Machine Learning Framework to Identify Bacteria Associated with Continuous Variables CoSIA: an R Bioconductor package for CrOss Species Investigation and Analysis LncLocFormer: a Transformer-based deep learning model for multi-label lncRNA subcellular localization prediction by using localization-specific attention mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1