Lauren M. Timmins, Patrick Erickson, Biju Parekkadan
{"title":"Investigating dynamics of lentiviral vector secretion from HEK293T producer cells using a fractionated perfusion system","authors":"Lauren M. Timmins, Patrick Erickson, Biju Parekkadan","doi":"10.1002/biot.202300097","DOIUrl":null,"url":null,"abstract":"<p>Mammalian cell culture is quickly becoming the go to engineering vehicle to mass produce viral vectors in a manner that is safe, convenient, reproducible, and cost and scale effective. Human embryonic kidney (HEK293) cells, in particular, have been utilized and customized (via differentiated transgene expression, modified culture parameters, addition of cytostatic culture agents) to increase vector yields. However, less attention has been made to understanding innate processes within the cells (such as, immune response, cell cycle, metabolism) themselves to better control or increase viral vector product yield. Accordingly, herein, the variation in viral production was studied from HEK cells over time using a one-way perfusion system and bioreactor to study the impact of external factors on secretion dynamics without retrotransduction. Specifically, the impact of cell density on viral titer, transduction efficiency, and LDH, was studied. Next, we look at the impact of using an inflammatory reporter cell line on viral output, and the secretion dynamics from HEK cells when we use sodium butyrate (cell cycle arrest agent). Lastly, we assess how downregulation of the PDK pathway increases viral titer. Altogether, we investigated the impact of various interventions to increase transient protein expression and viral output from HEK cells in a controlled and measurable environment to ultimately increase the efficiency of HEK cells for downstream clinical applications.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202300097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202300097","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Mammalian cell culture is quickly becoming the go to engineering vehicle to mass produce viral vectors in a manner that is safe, convenient, reproducible, and cost and scale effective. Human embryonic kidney (HEK293) cells, in particular, have been utilized and customized (via differentiated transgene expression, modified culture parameters, addition of cytostatic culture agents) to increase vector yields. However, less attention has been made to understanding innate processes within the cells (such as, immune response, cell cycle, metabolism) themselves to better control or increase viral vector product yield. Accordingly, herein, the variation in viral production was studied from HEK cells over time using a one-way perfusion system and bioreactor to study the impact of external factors on secretion dynamics without retrotransduction. Specifically, the impact of cell density on viral titer, transduction efficiency, and LDH, was studied. Next, we look at the impact of using an inflammatory reporter cell line on viral output, and the secretion dynamics from HEK cells when we use sodium butyrate (cell cycle arrest agent). Lastly, we assess how downregulation of the PDK pathway increases viral titer. Altogether, we investigated the impact of various interventions to increase transient protein expression and viral output from HEK cells in a controlled and measurable environment to ultimately increase the efficiency of HEK cells for downstream clinical applications.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.