Coxsackievirus B3 elicits a sex-specific CD8+ T cell response which protects female mice.

IF 6.7 1区 医学 Q1 Immunology and Microbiology PLoS Pathogens Pub Date : 2023-09-05 eCollection Date: 2023-09-01 DOI:10.1371/journal.ppat.1011465
Adeeba H Dhalech, Stephanie A Condotta, Aryamav Pattnaik, Caleb Corn, Martin J Richer, Christopher M Robinson
{"title":"Coxsackievirus B3 elicits a sex-specific CD8+ T cell response which protects female mice.","authors":"Adeeba H Dhalech, Stephanie A Condotta, Aryamav Pattnaik, Caleb Corn, Martin J Richer, Christopher M Robinson","doi":"10.1371/journal.ppat.1011465","DOIUrl":null,"url":null,"abstract":"<p><p>Sex is a significant contributor to the outcome of human infections. Males are frequently more susceptible to viral, bacterial, and fungal infections, often attributed to weaker immune responses. In contrast, a heightened immune response in females enables better pathogen elimination but leaves females more predisposed to autoimmune diseases. Unfortunately, the underlying basis for sex-specific immune responses remains poorly understood. Here, we show a sex difference in the CD8+ T cell response to an enteric virus, Coxsackievirus B3 (CVB3). We found that CVB3 induced expansion of CD8+ T cells in female mice but not in male mice. CVB3 also increased the proportion and number of CD11ahiCD62Llo CD8+ T cells in female mice, indicative of activation. This response was independent of the inoculation route and type I interferon. Using a recombinant CVB3 virus expressing a model CD8+ T cell epitope, we found that the expansion of CD8+ T cells in females is viral-specific and not due to bystander activation. Finally, the depletion of CD8+ T cells, prior to infection, led to enhanced mortality, indicating that CD8+ T cells are protective against CVB3 in female mice. These data demonstrate that CVB3 induces a CD8+ T cell response in female mice and highlight the importance of sex-specific immune responses to viral pathogens.</p>","PeriodicalId":20178,"journal":{"name":"PLoS Pathogens","volume":"19 9","pages":"e1011465"},"PeriodicalIF":6.7000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503745/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1011465","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

Sex is a significant contributor to the outcome of human infections. Males are frequently more susceptible to viral, bacterial, and fungal infections, often attributed to weaker immune responses. In contrast, a heightened immune response in females enables better pathogen elimination but leaves females more predisposed to autoimmune diseases. Unfortunately, the underlying basis for sex-specific immune responses remains poorly understood. Here, we show a sex difference in the CD8+ T cell response to an enteric virus, Coxsackievirus B3 (CVB3). We found that CVB3 induced expansion of CD8+ T cells in female mice but not in male mice. CVB3 also increased the proportion and number of CD11ahiCD62Llo CD8+ T cells in female mice, indicative of activation. This response was independent of the inoculation route and type I interferon. Using a recombinant CVB3 virus expressing a model CD8+ T cell epitope, we found that the expansion of CD8+ T cells in females is viral-specific and not due to bystander activation. Finally, the depletion of CD8+ T cells, prior to infection, led to enhanced mortality, indicating that CD8+ T cells are protective against CVB3 in female mice. These data demonstrate that CVB3 induces a CD8+ T cell response in female mice and highlight the importance of sex-specific immune responses to viral pathogens.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柯萨奇病毒B3引发性别特异性CD8+T细胞反应,保护雌性小鼠。
性别是人类感染结果的重要因素。雄性通常更容易受到病毒、细菌和真菌感染,这通常归因于较弱的免疫反应。相反,女性的免疫反应增强可以更好地消除病原体,但会使女性更容易患上自身免疫性疾病。不幸的是,性别特异性免疫反应的基本基础仍然知之甚少。在这里,我们展示了CD8+T细胞对肠道病毒柯萨奇病毒B3(CVB3)反应的性别差异。我们发现CVB3在雌性小鼠中诱导CD8+T细胞的扩增,但在雄性小鼠中没有。CVB3还增加了雌性小鼠中CD11ahiCD62Lo CD8+T细胞的比例和数量,这表明激活。这种反应与接种途径和I型干扰素无关。使用表达模型CD8+T细胞表位的重组CVB3病毒,我们发现CD8+T在雌性中的扩增是病毒特异性的,而不是由于旁观者的激活。最后,在感染之前,CD8+T细胞的耗竭导致死亡率增加,这表明CD8+T淋巴细胞对雌性小鼠的CVB3具有保护作用。这些数据表明,CVB3在雌性小鼠中诱导CD8+T细胞反应,并强调了对病毒病原体的性别特异性免疫反应的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens 生物-病毒学
CiteScore
11.40
自引率
3.00%
发文量
598
审稿时长
2 months
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
期刊最新文献
Glaesserella parasuis serotype 4 exploits fibronectin via RlpA for tracheal colonization following porcine circovirus type 2 infection Turning the needle into the haystack: Culture-independent amplification of complex microbial genomes directly from their native environment Drivers of diversification in fungal pathogen populations α-Synuclein strain propagation is independent of cellular prion protein expression in a transgenic synucleinopathy mouse model A comprehensive study of SARS-CoV-2 mfigain protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1