The temporal event-based model: Learning event timelines in progressive diseases.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2023-08-21 eCollection Date: 2023-08-01 DOI:10.1162/imag_a_00010
Peter A Wijeratne, Arman Eshaghi, William J Scotton, Maitrei Kohli, Leon Aksman, Neil P Oxtoby, Dorian Pustina, John H Warner, Jane S Paulsen, Rachael I Scahill, Cristina Sampaio, Sarah J Tabrizi, Daniel C Alexander
{"title":"The temporal event-based model: Learning event timelines in progressive diseases.","authors":"Peter A Wijeratne, Arman Eshaghi, William J Scotton, Maitrei Kohli, Leon Aksman, Neil P Oxtoby, Dorian Pustina, John H Warner, Jane S Paulsen, Rachael I Scahill, Cristina Sampaio, Sarah J Tabrizi, Daniel C Alexander","doi":"10.1162/imag_a_00010","DOIUrl":null,"url":null,"abstract":"<p><p>Timelines of events, such as symptom appearance or a change in biomarker value, provide powerful signatures that characterise progressive diseases. Understanding and predicting the timing of events is important for clinical trials targeting individuals early in the disease course when putative treatments are likely to have the strongest effect. However, previous models of disease progression cannot estimate the time between events and provide only an ordering in which they change. Here, we introduce the temporal event-based model (TEBM), a new probabilistic model for inferring timelines of biomarker events from sparse and irregularly sampled datasets. We demonstrate the power of the TEBM in two neurodegenerative conditions: Alzheimer's disease (AD) and Huntington's disease (HD). In both diseases, the TEBM not only recapitulates current understanding of event orderings but also provides unique new ranges of timescales between consecutive events. We reproduce and validate these findings using external datasets in both diseases. We also demonstrate that the TEBM improves over current models; provides unique stratification capabilities; and enriches simulated clinical trials to achieve a power of <math><mrow><mn>80</mn><mi>%</mi></mrow></math> with less than half the cohort size compared with random selection. The application of the TEBM naturally extends to a wide range of progressive conditions.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"1 ","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8e/2e/imag-1-00010.PMC10503481.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/imag_a_00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Timelines of events, such as symptom appearance or a change in biomarker value, provide powerful signatures that characterise progressive diseases. Understanding and predicting the timing of events is important for clinical trials targeting individuals early in the disease course when putative treatments are likely to have the strongest effect. However, previous models of disease progression cannot estimate the time between events and provide only an ordering in which they change. Here, we introduce the temporal event-based model (TEBM), a new probabilistic model for inferring timelines of biomarker events from sparse and irregularly sampled datasets. We demonstrate the power of the TEBM in two neurodegenerative conditions: Alzheimer's disease (AD) and Huntington's disease (HD). In both diseases, the TEBM not only recapitulates current understanding of event orderings but also provides unique new ranges of timescales between consecutive events. We reproduce and validate these findings using external datasets in both diseases. We also demonstrate that the TEBM improves over current models; provides unique stratification capabilities; and enriches simulated clinical trials to achieve a power of 80% with less than half the cohort size compared with random selection. The application of the TEBM naturally extends to a wide range of progressive conditions.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间事件的模型:在进行性疾病中学习事件时间线。
事件的时间线,如症状出现或生物标志物值的变化,提供了表征进行性疾病的有力信号。了解和预测事件发生的时间对于针对病程早期个体的临床试验很重要,因为假定的治疗可能具有最强的效果。然而,以前的疾病进展模型无法估计事件之间的时间,只能提供它们变化的顺序。在这里,我们介绍了基于时间事件的模型(TEBM),这是一种新的概率模型,用于从稀疏和不规则采样的数据集中推断生物标志物事件的时间线。我们证明了TEBM在两种神经退行性疾病中的作用:阿尔茨海默病(AD)和亨廷顿舞蹈症(HD)。在这两种疾病中,TEBM不仅概括了当前对事件顺序的理解,而且在连续事件之间提供了独特的新的时间尺度范围。我们使用这两种疾病的外部数据集复制并验证了这些发现。我们还证明了TEBM比当前模型有所改进;提供独特的分层能力;并丰富了模拟临床试验,以实现80%的功效,与随机选择相比,队列规模不到一半。TEBM的应用自然扩展到广泛的渐进条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic data in generalizable, learning-based neuroimaging. Processing, evaluating, and understanding FMRI data with afni_proc.py. NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis improves brain activity detection across rodent and human functional MRI contexts. Measurement variability of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging. ECCENTRIC: A fast and unrestrained approach for high-resolution in vivo metabolic imaging at ultra-high field MR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1