D Abu Baker, S Patel, P Charalambous, N Albuloushi, J Rodriguez
{"title":"Multi-Modal Digital Impressions For Palatal Defects.","authors":"D Abu Baker, S Patel, P Charalambous, N Albuloushi, J Rodriguez","doi":"10.1922/EJPRD_2586AbuBaker08","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This in-vitro study investigated limitations of intra-oral scanners (IOS) in capturing palatal defects at decreased mouth openings. The trueness and precision of composite 3D-printed models from Cone-Beam Computed Tomography (CBCT) and IOS were measured.</p><p><strong>Methods: </strong>A partially dentate palatal defect model was scanned with IOS (3M™TrueDefinition) at various simulated mouth openings. Five silicone impressions were poured in gypsum. Scans were taken using 3M™TrueDefinition; Planmeca Planscan®, n=5 each. Model was scanned on two CBCT (PlanmecaProFace®; Accuitomo170®CBCT, n=5 each). Geomagic®Control2014™ was used to create composite-models merging CBCT with IOS. Thirty composite-models were 3D-printed. Trueness and precision were measured. Pearson Correlation Coefficients measured correlation between mouth opening and data capture. Data analysed using Kruskal-Wallis, Wilcoxon rank-sum, and ANOVA. Statistical significance inferred when p⟨0.05.</p><p><strong>Results: </strong>Mouth openings ⟨20mm, IOS didn't capture information of soft tissue. Increased mouth opening positively correlated with increased data capture(r=0.93, p=0.001). AccuitomoCBCT and TrueDefinition IOS composite-models had the highest (trueness) and [precision](median (IQR) 0.172 mm(0.062-0.426)); [mean [SD] 0.080 mm [0.008]]. Casts had the lowest results (median (IQR) 0.289 mm(0.119-1.565));[mean [SD] 0.338 mm [0.089]](p⟨0.001).</p><p><strong>Conclusion: </strong>Mouth opening ⟨20mm resulted in insufficient data capture by IOS for clinical applications. Composite digital models showed promising trueness and precision results.</p>","PeriodicalId":45686,"journal":{"name":"European Journal of Prosthodontics and Restorative Dentistry","volume":" ","pages":"75-82"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Prosthodontics and Restorative Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1922/EJPRD_2586AbuBaker08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This in-vitro study investigated limitations of intra-oral scanners (IOS) in capturing palatal defects at decreased mouth openings. The trueness and precision of composite 3D-printed models from Cone-Beam Computed Tomography (CBCT) and IOS were measured.
Methods: A partially dentate palatal defect model was scanned with IOS (3M™TrueDefinition) at various simulated mouth openings. Five silicone impressions were poured in gypsum. Scans were taken using 3M™TrueDefinition; Planmeca Planscan®, n=5 each. Model was scanned on two CBCT (PlanmecaProFace®; Accuitomo170®CBCT, n=5 each). Geomagic®Control2014™ was used to create composite-models merging CBCT with IOS. Thirty composite-models were 3D-printed. Trueness and precision were measured. Pearson Correlation Coefficients measured correlation between mouth opening and data capture. Data analysed using Kruskal-Wallis, Wilcoxon rank-sum, and ANOVA. Statistical significance inferred when p⟨0.05.
Results: Mouth openings ⟨20mm, IOS didn't capture information of soft tissue. Increased mouth opening positively correlated with increased data capture(r=0.93, p=0.001). AccuitomoCBCT and TrueDefinition IOS composite-models had the highest (trueness) and [precision](median (IQR) 0.172 mm(0.062-0.426)); [mean [SD] 0.080 mm [0.008]]. Casts had the lowest results (median (IQR) 0.289 mm(0.119-1.565));[mean [SD] 0.338 mm [0.089]](p⟨0.001).
Conclusion: Mouth opening ⟨20mm resulted in insufficient data capture by IOS for clinical applications. Composite digital models showed promising trueness and precision results.
期刊介绍:
The European Journal of Prosthodontics and Restorative Dentistry is published quarterly and includes clinical and research articles in subjects such as prosthodontics, operative dentistry, implantology, endodontics, periodontics and dental materials.