A novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative inhibits cell proliferation by suppressing the MEK/ERK signaling pathway in colorectal cancer.
Weiwei Li, Zhifu Yang, Likun Ding, Ying Wang, Xian Zhao, Jian Jie Chu, Qing Ji, Minna Yao, Jingwen Wang
{"title":"A novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative inhibits cell proliferation by suppressing the MEK/ERK signaling pathway in colorectal cancer.","authors":"Weiwei Li, Zhifu Yang, Likun Ding, Ying Wang, Xian Zhao, Jian Jie Chu, Qing Ji, Minna Yao, Jingwen Wang","doi":"10.2478/acph-2023-0025","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is one of the most common types of malignant cancers worldwide. Although molecularly targeted therapies have significantly improved treatment outcomes, most of these target inhibitors are resistant. Novel inhibitors as potential anticancer drug candidates are still needed to be discovered. Therefore, in the present study, we synthesized a novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative (compound <b>4</b>) using fragment- and structure-based techniques and then investigated the anticancer effect and underlying mechanism of anti-CRC. The results revealed that compound <b>4</b> significantly inhibited HCT116 cell proliferation with <i>IC</i> <sub>50</sub> values of 8.04 ± 0.94 µmol L<sup>-1</sup> after 48 h and 5.52 ± 0.42 µmol L<sup>-1</sup> after 72 h, respectively. Compound <b>4</b> also inhibited colony formation, migration, and invasion of HCT116 cells in a dose-dependent manner, as well as inducing cell apoptosis and arresting the cell cycle in the G2/M phase. In addition, compound <b>4</b> was able to inhibit the activation of the MEK/ERK signaling in HCT116 cells. And compound <b>4</b> yielded the same effects as the MEK inhibitor U0126 on cell apoptosis and MEK/ERK-related proteins. These findings suggested that compound <b>4</b> inhi bited cell proliferation and growth, and induced cell apoptosis, indicating its use as a novel and potent anticancer agent against CRC <i>via</i> the MEK/ERK signaling pathway.</p>","PeriodicalId":7034,"journal":{"name":"Acta Pharmaceutica","volume":"73 3","pages":"489-502"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/acph-2023-0025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1
Abstract
Colorectal cancer (CRC) is one of the most common types of malignant cancers worldwide. Although molecularly targeted therapies have significantly improved treatment outcomes, most of these target inhibitors are resistant. Novel inhibitors as potential anticancer drug candidates are still needed to be discovered. Therefore, in the present study, we synthesized a novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative (compound 4) using fragment- and structure-based techniques and then investigated the anticancer effect and underlying mechanism of anti-CRC. The results revealed that compound 4 significantly inhibited HCT116 cell proliferation with IC50 values of 8.04 ± 0.94 µmol L-1 after 48 h and 5.52 ± 0.42 µmol L-1 after 72 h, respectively. Compound 4 also inhibited colony formation, migration, and invasion of HCT116 cells in a dose-dependent manner, as well as inducing cell apoptosis and arresting the cell cycle in the G2/M phase. In addition, compound 4 was able to inhibit the activation of the MEK/ERK signaling in HCT116 cells. And compound 4 yielded the same effects as the MEK inhibitor U0126 on cell apoptosis and MEK/ERK-related proteins. These findings suggested that compound 4 inhi bited cell proliferation and growth, and induced cell apoptosis, indicating its use as a novel and potent anticancer agent against CRC via the MEK/ERK signaling pathway.
期刊介绍:
AP is an international, multidisciplinary journal devoted to pharmaceutical and allied sciences and contains articles predominantly on core biomedical and health subjects. The aim of AP is to increase the impact of pharmaceutical research in academia, industry and laboratories. With strong emphasis on quality and originality, AP publishes reports from the discovery of a drug up to clinical practice. Topics covered are: analytics, biochemistry, biopharmaceutics, biotechnology, cell biology, cell cultures, clinical pharmacy, drug design, drug delivery, drug disposition, drug stability, gene technology, medicine (including diagnostics and therapy), medicinal chemistry, metabolism, molecular modeling, pharmacology (clinical and animal), peptide and protein chemistry, pharmacognosy, pharmacoepidemiology, pharmacoeconomics, pharmacodynamics and pharmacokinetics, protein design, radiopharmaceuticals, and toxicology.