Genetic engineering of low-temperature polyhydroxyalkanoate production by Acidovorax sp. A1169, a psychrophile isolated from a subglacial outflow.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-09-14 DOI:10.1007/s00792-023-01311-5
Jakub Grzesiak, Jan Gawor, Małgorzata Marta Rogala, Xenie Kouřilová, Stanislav Obruča
{"title":"Genetic engineering of low-temperature polyhydroxyalkanoate production by Acidovorax sp. A1169, a psychrophile isolated from a subglacial outflow.","authors":"Jakub Grzesiak,&nbsp;Jan Gawor,&nbsp;Małgorzata Marta Rogala,&nbsp;Xenie Kouřilová,&nbsp;Stanislav Obruča","doi":"10.1007/s00792-023-01311-5","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyalkanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concerning PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a temperature of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, production of PHA and also on the methodology for genetic engineering of psychrophiles.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-023-01311-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyalkanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concerning PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a temperature of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, production of PHA and also on the methodology for genetic engineering of psychrophiles.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acidovorax sp.A1169低温生产聚羟基烷酸酯的基因工程。A1169是一种从冰下流出物中分离的嗜冷菌。
近年来,极端微生物已被用作微生物生物塑料聚羟基烷酸酯(PHA)的生产商,具有重要的生物技术价值。然而,喜冷或嗜冷(嗜冷)细菌在这方面被忽视了。在这里,我们对北极冰川衍生的PHA生产商Acidovorax sp.A1169进行了调查。Biolog GEN III微孔板被用作筛选工具,以确定与PHA合成有关的最合适的碳底物。当以果糖或甘露醇作为碳源时,该菌株在15°C的温度下最有效地产生均聚物聚(3-羟基丁酸)(PHB)(2 g/L),在17.5°C时PHB生物合成显著降低。当碳源浓度超过10 g/L时,PHB产量没有显著增加,甚至下降,这表明该菌株本质上是寡营养的。该菌株还能够将3-羟基戊酸酯(3HV)引入聚合物结构中,已知这可以改善PHA热塑性性能。这是第一项通过真正的嗜冷菌深入了解PHA生物合成过程的研究,为极地细菌培养、PHA的生产以及嗜冷菌的基因工程方法提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1