Neurodevelopmental toxicity induced by PM2.5 Exposure and its possible role in Neurodegenerative and mental disorders.

IF 2.7 4区 医学 Q3 TOXICOLOGY Human & Experimental Toxicology Pub Date : 2023-01-01 DOI:10.1177/09603271231191436
Xin-Qi Liu, Jia Huang, Chao Song, Tian-Liang Zhang, Yong-Ping Liu, Li Yu
{"title":"Neurodevelopmental toxicity induced by PM2.5 Exposure and its possible role in Neurodegenerative and mental disorders.","authors":"Xin-Qi Liu,&nbsp;Jia Huang,&nbsp;Chao Song,&nbsp;Tian-Liang Zhang,&nbsp;Yong-Ping Liu,&nbsp;Li Yu","doi":"10.1177/09603271231191436","DOIUrl":null,"url":null,"abstract":"<p><p>Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 μm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/β-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.</p>","PeriodicalId":13181,"journal":{"name":"Human & Experimental Toxicology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & Experimental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09603271231191436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 μm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/β-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PM2.5暴露引起的神经发育毒性及其在神经退行性疾病和精神障碍中的可能作用。
最近广泛的证据表明,环境细颗粒物(PM2.5,空气动力学直径≤2.5μm)可能对大脑具有神经毒性,并导致中枢神经系统损伤,导致神经发育障碍,如自闭症谱系障碍、神经退行性疾病,如阿尔茨海默病和帕金森病,以及精神障碍,如精神分裂症,抑郁症和双相情感障碍。PM2.5可以通过多种途径进入大脑,包括血脑屏障、嗅觉系统和肠脑轴,对中枢神经系统产生不利影响。对人类和动物的研究表明,PM2.5介导的机制,包括神经炎症、氧化应激、全身炎症和肠道菌群失调,在中枢神经系统损伤中发挥着至关重要的作用。此外,PM2.5暴露可诱导表观遗传学改变,如DNA的低甲基化,这可能有助于某些中枢神经系统损伤的发病机制。通过文献分析,我们认为缓解PM2.5诱导的神经损伤的有希望的治疗靶点包括抑制小胶质细胞过度活化,用抗生素调节肠道微生物群,以及靶向PKA/CREB/BDNF和WNT/β-catenin等信号通路。此外,几项研究观察到PM2.5暴露与神经精神疾病的表观遗传学变化之间存在关联。本文综述并讨论了PM2.5暴露与中枢神经系统损伤之间的关系,包括PM2.5引起神经毒性的可能机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
3.60%
发文量
128
审稿时长
2.3 months
期刊介绍: Human and Experimental Toxicology (HET), an international peer reviewed journal, is dedicated to publishing preclinical and clinical original research papers and in-depth reviews that comprehensively cover studies of functional, biochemical and structural disorders in toxicology. The principal aim of the HET is to publish timely high impact hypothesis driven scholarly work with an international scope. The journal publishes on: Structural, functional, biochemical, and molecular effects of toxic agents; Studies that address mechanisms/modes of toxicity; Safety evaluation of novel chemical, biotechnologically-derived products, and nanomaterials for human health assessment including statistical and mechanism-based approaches; Novel methods or approaches to research on animal and human tissues (medical and veterinary patients) investigating functional, biochemical and structural disorder; in vitro techniques, particularly those supporting alternative methods
期刊最新文献
CircRNA_001373 promotes liver fibrosis by regulating autophagy activation in hepatic stellate cells via the miR-142a-5p/Becn1 axis Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5‘-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathway Ergot alkaloid consumption alters serotonin receptor-induced vasoactivity in ovine umbilical vasculature Expression of PVT-1 and miR-29a/29b as reliable biomarkers for liver cirrhosis and their correlation with the inflammatory biomarkers profile. Baicalein exerts beneficial effects in lipopolysaccharide-induced pulmonary inflammation by modulating macrophage polarization and inhibiting pyroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1