Nathalie Oulhen, Maria Byrne, Paige Duffin, Marta Gomez-Chiarri, Ian Hewson, Jason Hodin, Brenda Konar, Erin K Lipp, Benjamin G Miner, Alisa L Newton, Lauren M Schiebelhut, Roxanna Smolowitz, Sarah J Wahltinez, Gary M Wessel, Thierry M Work, Hossam A Zaki, John P Wares
{"title":"A Review of Asteroid Biology in the Context of Sea Star Wasting: Possible Causes and Consequences.","authors":"Nathalie Oulhen, Maria Byrne, Paige Duffin, Marta Gomez-Chiarri, Ian Hewson, Jason Hodin, Brenda Konar, Erin K Lipp, Benjamin G Miner, Alisa L Newton, Lauren M Schiebelhut, Roxanna Smolowitz, Sarah J Wahltinez, Gary M Wessel, Thierry M Work, Hossam A Zaki, John P Wares","doi":"10.1086/719928","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 1","pages":"50-75"},"PeriodicalIF":2.1000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642522/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/719928","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.