Zhanshu Ma, Qi Gao, Wenjing Xin, Lei Wang, Yan Chen, Chang Su, Songyan Gao, Ruiling Sun
{"title":"The role of miR-143-3p/FNDC1 axis on the progression of non-small cell lung cancer.","authors":"Zhanshu Ma, Qi Gao, Wenjing Xin, Lei Wang, Yan Chen, Chang Su, Songyan Gao, Ruiling Sun","doi":"10.4081/ejh.2023.3577","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to explore the functional role of fibronectin type III domain containing 1 (FNDC1) in nonsmall cell lung cancer (NSCLC), as well as the mechanism governing its expression. The expression levels of FNDC1 and related genes in tissue and cell samples were detected by qRT-PCR. Kaplan-Meier analysis was employed to analyze the association between FNDC1 level and the overall survival of NSCLC patients. Functional experiments such as CCK-8 proliferation, colony formation, EDU staining, migration and invasion assays were conducted to investigate the functional role of FNDC1 in regulating the malignancy of NSCLC cells. Bioinformatic tools and dual-luciferase reporter assay were used to identify the miRNA regulator of FNDC1 in NSCLC cells. Our data revealed the upregulation of FNDC1 at mRNA and protein levels in NSCLC tumor tissues cancer cell lines, compared with normal counterparts. NSCLC patients with higher FNDC1 expression suffered from a poorer overall survival. FNDC1 knockdown significantly suppressed the proliferation, migration and invasion of NSCLC cells, and had an inhibitory effect on tube formation. We further demonstrated that miR-143-3p was an upstream regulator of FNDC1 and miR-143-3p expression was repressed in NSCLC samples. Similar to FNDC1 knockdown, miR-143-3p overexpression inhibited the growth, migration and invasion of NSCLC cells. FNDC1 overexpression could partially rescue the effect of miR-143-3p overexpression. FNDC1 silencing also suppressed the tumorigenesis of NSCLC cells in mouse model. In conclusion, FNDC1 promotes the malignant prototypes of NSCLC cells. miR-143-3p is a negative regulator of FNDC1 in NSCLC cells, which may serve as a promising therapeutic target in NSCLC.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4a/43/ejh-67-2-3577.PMC10203978.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Histochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4081/ejh.2023.3577","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The study aimed to explore the functional role of fibronectin type III domain containing 1 (FNDC1) in nonsmall cell lung cancer (NSCLC), as well as the mechanism governing its expression. The expression levels of FNDC1 and related genes in tissue and cell samples were detected by qRT-PCR. Kaplan-Meier analysis was employed to analyze the association between FNDC1 level and the overall survival of NSCLC patients. Functional experiments such as CCK-8 proliferation, colony formation, EDU staining, migration and invasion assays were conducted to investigate the functional role of FNDC1 in regulating the malignancy of NSCLC cells. Bioinformatic tools and dual-luciferase reporter assay were used to identify the miRNA regulator of FNDC1 in NSCLC cells. Our data revealed the upregulation of FNDC1 at mRNA and protein levels in NSCLC tumor tissues cancer cell lines, compared with normal counterparts. NSCLC patients with higher FNDC1 expression suffered from a poorer overall survival. FNDC1 knockdown significantly suppressed the proliferation, migration and invasion of NSCLC cells, and had an inhibitory effect on tube formation. We further demonstrated that miR-143-3p was an upstream regulator of FNDC1 and miR-143-3p expression was repressed in NSCLC samples. Similar to FNDC1 knockdown, miR-143-3p overexpression inhibited the growth, migration and invasion of NSCLC cells. FNDC1 overexpression could partially rescue the effect of miR-143-3p overexpression. FNDC1 silencing also suppressed the tumorigenesis of NSCLC cells in mouse model. In conclusion, FNDC1 promotes the malignant prototypes of NSCLC cells. miR-143-3p is a negative regulator of FNDC1 in NSCLC cells, which may serve as a promising therapeutic target in NSCLC.
期刊介绍:
The Journal publishes original papers concerning investigations by histochemical and immunohistochemical methods, and performed with the aid of light, super-resolution and electron microscopy, cytometry and imaging techniques. Coverage extends to:
functional cell and tissue biology in animals and plants;
cell differentiation and death;
cell-cell interaction and molecular trafficking;
biology of cell development and senescence;
nerve and muscle cell biology;
cellular basis of diseases.
The histochemical approach is nowadays essentially aimed at locating molecules in the very place where they exert their biological roles, and at describing dynamically specific chemical activities in living cells. Basic research on cell functional organization is essential for understanding the mechanisms underlying major biological processes such as differentiation, the control of tissue homeostasis, and the regulation of normal and tumor cell growth. Even more than in the past, the European Journal of Histochemistry, as a journal of functional cytology, represents the venue where cell scientists may present and discuss their original results, technical improvements and theories.