The protective impact of growth hormone against rotenone-induced apoptotic cell death via acting on endoplasmic reticulum stress and autophagy axis.

Özge Berrak Rencüzoğullari, Selay Tornaci, Yağmur Çelik, Nayat Narot Ciroğlu, Pınar Obakan Yerlikaya, Elif Damla Arisan, Ajda Çoker Gürkan
{"title":"The protective impact of growth hormone against rotenone-induced apoptotic cell death via acting on endoplasmic reticulum stress and autophagy axis.","authors":"Özge Berrak Rencüzoğullari,&nbsp;Selay Tornaci,&nbsp;Yağmur Çelik,&nbsp;Nayat Narot Ciroğlu,&nbsp;Pınar Obakan Yerlikaya,&nbsp;Elif Damla Arisan,&nbsp;Ajda Çoker Gürkan","doi":"10.55730/1300-0152.2639","DOIUrl":null,"url":null,"abstract":"<p><p>Human growth hormone (GH) is crucial modulator of cellular metabolisms, including cell proliferation and organ development, by stimulating insulin-like growth factor-1 (IGF-1), which has various functions such as cell proliferation, tissue growth, survival, or neuroprotection. Therefore, GH is implicated as a critical player in the cell and can enhance neurogenesis and provide neuroprotection during the treatment of neurological diseases such as Parkinson's disease (PD). In this study, the neuroprotective role of GH was investigated in rotenone-induced PD models for the first time. Both SH-SY5Y and SK-N-AS neuroblastoma cells were exposed to rotenone to mimic PD pathogenesis as stated in previous studies. Our data demonstrated that overexpression of GH led to the resistance of the SH-SY5Y and SK-N-AS cell lines to rotenone treatment. The levels of ER stress markers, CHOP, PERK, XBP-1, and ATF6, were higher in wt cells than GH+ SH-SY5Y cells. However, the level of autophagy markers LC3 increased and the levels of reactive oxygen species (ROS) decreased with the overexpression of GH. Furthermore, while rotenone significantly increased the SubG1 population in the cell cycle of SH-SY5Y wt cells, there was a minor alteration in GH+ cell population. Concomitantly, the levels of the proapoptotic marker, cleaved-PARP, and positive staining of Annexin V in SH-SY5Y wt cells were higher after rotenone treatment. Together, these results revealed that overexpression of GH enhanced the autophagy response by triggering the ER stress of SH-SY5Y cells to rotenone exposure and showed a neuroprotective effect in vitro PD models.</p>","PeriodicalId":23375,"journal":{"name":"Turkish journal of biology = Turk biyoloji dergisi","volume":"47 1","pages":"29-43"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388008/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish journal of biology = Turk biyoloji dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0152.2639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human growth hormone (GH) is crucial modulator of cellular metabolisms, including cell proliferation and organ development, by stimulating insulin-like growth factor-1 (IGF-1), which has various functions such as cell proliferation, tissue growth, survival, or neuroprotection. Therefore, GH is implicated as a critical player in the cell and can enhance neurogenesis and provide neuroprotection during the treatment of neurological diseases such as Parkinson's disease (PD). In this study, the neuroprotective role of GH was investigated in rotenone-induced PD models for the first time. Both SH-SY5Y and SK-N-AS neuroblastoma cells were exposed to rotenone to mimic PD pathogenesis as stated in previous studies. Our data demonstrated that overexpression of GH led to the resistance of the SH-SY5Y and SK-N-AS cell lines to rotenone treatment. The levels of ER stress markers, CHOP, PERK, XBP-1, and ATF6, were higher in wt cells than GH+ SH-SY5Y cells. However, the level of autophagy markers LC3 increased and the levels of reactive oxygen species (ROS) decreased with the overexpression of GH. Furthermore, while rotenone significantly increased the SubG1 population in the cell cycle of SH-SY5Y wt cells, there was a minor alteration in GH+ cell population. Concomitantly, the levels of the proapoptotic marker, cleaved-PARP, and positive staining of Annexin V in SH-SY5Y wt cells were higher after rotenone treatment. Together, these results revealed that overexpression of GH enhanced the autophagy response by triggering the ER stress of SH-SY5Y cells to rotenone exposure and showed a neuroprotective effect in vitro PD models.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生长激素通过内质网应激和自噬轴对鱼藤酮诱导的凋亡细胞死亡的保护作用。
人类生长激素(GH)是细胞代谢的重要调节剂,包括细胞增殖和器官发育,通过刺激胰岛素样生长因子-1 (IGF-1),具有多种功能,如细胞增殖、组织生长、生存或神经保护。因此,生长激素在细胞中起着关键作用,在帕金森病(PD)等神经系统疾病的治疗过程中可以促进神经发生并提供神经保护。本研究首次在鱼藤酮诱导的PD模型中研究生长激素的神经保护作用。之前的研究表明,SH-SY5Y和SK-N-AS神经母细胞瘤细胞暴露于鱼tenone以模拟PD的发病机制。我们的数据表明,GH的过度表达导致SH-SY5Y和SK-N-AS细胞系对鱼藤酮的抗性。内质酸应激标志物CHOP、PERK、XBP-1和ATF6在wt细胞中的表达水平高于GH+ SH-SY5Y细胞。然而,随着GH的过表达,自噬标志物LC3水平升高,活性氧(ROS)水平降低。此外,鱼藤酮在SH-SY5Y wt细胞周期中显著增加了SubG1群体,而在GH+细胞群体中有轻微的变化。同时,鱼tenone处理后SH-SY5Y wt细胞中促凋亡标志物、cleaved-PARP水平升高,Annexin V阳性染色升高。总之,这些结果表明,GH的过表达通过触发SH-SY5Y细胞对鱼藤酮暴露的内质网应激来增强自噬反应,并在体外PD模型中显示出神经保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vitamin D receptor mediates liver ischemia and reperfusion injury by autophagy-regulated M2 macrophage polarization. Functional enhancement of acute infracted heart by coinjection of autologous adipose-derived stem cells with matrigel. tsRNA-15797-modified BMSC-derived exosomes mediate LFNG to induce angiogenesis in osteonecrosis of the femoral head. LINC00460 mediates HMGA2 expression through binding to miRNA-143-5p competitively in gastric carcinoma. Emerging applications of 3D engineered constructs from plant seed extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1