Leveraging microRNAs for cellular therapy

IF 3.3 4区 医学 Q3 IMMUNOLOGY Immunology letters Pub Date : 2023-10-01 DOI:10.1016/j.imlet.2023.08.005
Marko Hasiuk , Marianne Dölz , Romina Marone , Lukas T. Jeker
{"title":"Leveraging microRNAs for cellular therapy","authors":"Marko Hasiuk ,&nbsp;Marianne Dölz ,&nbsp;Romina Marone ,&nbsp;Lukas T. Jeker","doi":"10.1016/j.imlet.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to Karl Landsteiner's discovery of blood groups, blood transfusions became safe cellular therapies in the early 1900s. Since then, cellular therapy made great advances from transfusions with unmodified cells to today's commercially available chimeric antigen receptor (CAR) T cells requiring complex manufacturing. Modern cellular therapy products can be improved using basic knowledge of cell biology and molecular genetics. Emerging genome engineering tools are becoming ever more versatile and precise and thus catalyze rapid progress towards programmable therapeutic cells that compute input and respond with defined output. Despite a large body of literature describing important functions of non-coding RNAs including microRNAs (miRNAs), the vast majority of cell engineering efforts focuses on proteins. However, miRNAs form an important layer of posttranscriptional regulation of gene expression. Here, we highlight examples of how miRNAs can successfully be incorporated into engineered cellular therapies.</p></div>","PeriodicalId":13413,"journal":{"name":"Immunology letters","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165247823001438","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Owing to Karl Landsteiner's discovery of blood groups, blood transfusions became safe cellular therapies in the early 1900s. Since then, cellular therapy made great advances from transfusions with unmodified cells to today's commercially available chimeric antigen receptor (CAR) T cells requiring complex manufacturing. Modern cellular therapy products can be improved using basic knowledge of cell biology and molecular genetics. Emerging genome engineering tools are becoming ever more versatile and precise and thus catalyze rapid progress towards programmable therapeutic cells that compute input and respond with defined output. Despite a large body of literature describing important functions of non-coding RNAs including microRNAs (miRNAs), the vast majority of cell engineering efforts focuses on proteins. However, miRNAs form an important layer of posttranscriptional regulation of gene expression. Here, we highlight examples of how miRNAs can successfully be incorporated into engineered cellular therapies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用微小RNA进行细胞治疗。
由于Karl Landsteiner对血型的发现,输血在20世纪初成为安全的细胞疗法。从那时起,细胞治疗取得了巨大进展,从用未修饰的细胞输注到今天需要复杂制造的市售嵌合抗原受体(CAR)T细胞。利用细胞生物学和分子遗传学的基本知识可以改进现代细胞治疗产品。新兴的基因组工程工具变得越来越通用和精确,从而促进了可编程治疗细胞的快速发展,这些细胞可以计算输入并以确定的输出做出反应。尽管有大量文献描述了包括微小RNA在内的非编码RNA的重要功能,但绝大多数细胞工程工作都集中在蛋白质上。然而,miRNA形成了转录后基因表达调控的重要层。在这里,我们重点介绍了miRNA如何成功纳入工程细胞疗法的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunology letters
Immunology letters 医学-免疫学
CiteScore
7.60
自引率
0.00%
发文量
86
审稿时长
44 days
期刊介绍: Immunology Letters provides a vehicle for the speedy publication of experimental papers, (mini)Reviews and Letters to the Editor addressing all aspects of molecular and cellular immunology. The essential criteria for publication will be clarity, experimental soundness and novelty. Results contradictory to current accepted thinking or ideas divergent from actual dogmas will be considered for publication provided that they are based on solid experimental findings. Preference will be given to papers of immediate importance to other investigators, either by their experimental data, new ideas or new methodology. Scientific correspondence to the Editor-in-Chief related to the published papers may also be accepted provided that they are short and scientifically relevant to the papers mentioned, in order to provide a continuing forum for discussion.
期刊最新文献
Reassuring humoral and cellular immune responses to SARS-CoV-2 vaccination in participants with systemic sclerosis Gene Therapy Strategies for RAG1 Deficiency: Challenges and Breakthroughs. NK cell receptors in anti-tumor and healthy tissue protection: Mechanisms and therapeutic advances The alpha2-adrenoceptor agonist clonidine protects against hypoxic-ischemic brain damage in neonatal mice through the Nrf2/NF-κB signaling pathway. IL-21 drives skin and lung inflammation and fibrosis in a model for systemic sclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1