{"title":"Resting State Network Segregation Modulates Age-Related Differences in Language Production.","authors":"Haoyun Zhang, Michele T Diaz","doi":"10.1162/nol_a_00106","DOIUrl":null,"url":null,"abstract":"<p><p>Older adults typically exhibit decline in language production. However, how the brain supports or fails to support these processes is unclear. Moreover, there are competing hypotheses about the nature of age-related neural changes and whether age-related increases in neural activity reflect compensation or a decline in neural efficiency. In the current study, we investigated the neural bases of language production focusing on resting state functional connectivity. We hypothesized that language production performance, functional connectivity, and their relationship would differ as a function of age. Consistent with prior work, older age was associated with worse language production performance. Functional connectivity analyses showed that network segregation within the left hemisphere language network was maintained across adulthood. However, increased age was associated with lower whole brain network segregation. Moreover, network segregation was related to language production ability. In both network analyses, there were significant interactions with age-higher network segregation was associated with better language production abilities for younger and middle-aged adults, but not for older adults. Interestingly, there was a stronger relationship between language production and the whole brain network segregation than between production and the language network. These results highlight the utility of network segregation measures as an index of brain function, with higher network segregation associated with better language production ability. Moreover, these results are consistent with stability in the left hemisphere language network across adulthood and suggest that dedifferentiation among brain networks, outside of the language network, is a hallmark of aging and may contribute to age-related language production difficulties.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/nol_a_00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Older adults typically exhibit decline in language production. However, how the brain supports or fails to support these processes is unclear. Moreover, there are competing hypotheses about the nature of age-related neural changes and whether age-related increases in neural activity reflect compensation or a decline in neural efficiency. In the current study, we investigated the neural bases of language production focusing on resting state functional connectivity. We hypothesized that language production performance, functional connectivity, and their relationship would differ as a function of age. Consistent with prior work, older age was associated with worse language production performance. Functional connectivity analyses showed that network segregation within the left hemisphere language network was maintained across adulthood. However, increased age was associated with lower whole brain network segregation. Moreover, network segregation was related to language production ability. In both network analyses, there were significant interactions with age-higher network segregation was associated with better language production abilities for younger and middle-aged adults, but not for older adults. Interestingly, there was a stronger relationship between language production and the whole brain network segregation than between production and the language network. These results highlight the utility of network segregation measures as an index of brain function, with higher network segregation associated with better language production ability. Moreover, these results are consistent with stability in the left hemisphere language network across adulthood and suggest that dedifferentiation among brain networks, outside of the language network, is a hallmark of aging and may contribute to age-related language production difficulties.