Mesenchymal Stem Cell-Derived Exosomes Mitigate Acute Murine Liver Injury via Ets-1 and Heme Oxygenase-1 Up-regulation.

IF 2.1 4区 医学 Q4 CELL & TISSUE ENGINEERING Current stem cell research & therapy Pub Date : 2024-01-01 DOI:10.2174/1574888X19666230918102826
Ying-Hsien Kao, Chih-Yang Chang, Yu-Chun Lin, Po-Han Chen, Po-Huang Lee, Huoy-Rou Chang, Wen-Yu Chang, Yo-Chen Chang, Shen-Fa Wun, Cheuk-Kwan Sun
{"title":"Mesenchymal Stem Cell-Derived Exosomes Mitigate Acute Murine Liver Injury via Ets-1 and Heme Oxygenase-1 Up-regulation.","authors":"Ying-Hsien Kao, Chih-Yang Chang, Yu-Chun Lin, Po-Han Chen, Po-Huang Lee, Huoy-Rou Chang, Wen-Yu Chang, Yo-Chen Chang, Shen-Fa Wun, Cheuk-Kwan Sun","doi":"10.2174/1574888X19666230918102826","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mesenchymal stem cells (MSCs)-derived exosomes have been previously demonstrated to promote tissue regeneration in various animal disease models. This study investigated the protective effect of exosome treatment in carbon tetrachloride (CCl4)-induced acute liver injury and delineated possible underlying mechanism.</p><p><strong>Methods: </strong>Exosomes collected from conditioned media of previously characterized human umbilical cord-derived MSCs were intravenously administered into male CD-1 mice with CCl<sub>4</sub>-induced acute liver injury. Biochemical, histological and molecular parameters were used to evaluate the severity of liver injury. A rat hepatocyte cell line, Clone-9, was used to validate the molecular changes by exosome treatment.</p><p><strong>Results: </strong>Exosome treatment significantly suppressed plasma levels of AST, ALT, and pro-inflammatory cytokines, including IL-6 and TNF-α, in the mice with CCl<sub>4</sub>-induced acute liver injury. Histological morphometry revealed a significant reduction in the necropoptic area in the injured livers following exosome therapy. Consistently, western blot analysis indicated marked elevations in hepatic expression of PCNA, c-Met, Ets-1, and HO-1 proteins after exosome treatment. Besides, the phosphorylation level of signaling mediator JNK was significantly increased, and that of p38 was restored by exosome therapy. Immunohistochemistry double staining confirmed nuclear Ets-1 expression and cytoplasmic localization of c-Met and HO-1 proteins. <i>In vitro</i> studies demonstrated that exosome treatment increased the proliferation of Clone-9 hepatocytes and protected them from CCl4-induced cytotoxicity. Kinase inhibition experiment indicated that the exosome-driven hepatoprotection might be mediated through the JNK pathway.</p><p><strong>Conclusion: </strong>Exosome therapy activates the JNK signaling activation pathway as well as up-regulates Ets-1 and HO-1 expression, thereby protecting hepatocytes against hepatotoxin-induced cell death.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"906-918"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574888X19666230918102826","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mesenchymal stem cells (MSCs)-derived exosomes have been previously demonstrated to promote tissue regeneration in various animal disease models. This study investigated the protective effect of exosome treatment in carbon tetrachloride (CCl4)-induced acute liver injury and delineated possible underlying mechanism.

Methods: Exosomes collected from conditioned media of previously characterized human umbilical cord-derived MSCs were intravenously administered into male CD-1 mice with CCl4-induced acute liver injury. Biochemical, histological and molecular parameters were used to evaluate the severity of liver injury. A rat hepatocyte cell line, Clone-9, was used to validate the molecular changes by exosome treatment.

Results: Exosome treatment significantly suppressed plasma levels of AST, ALT, and pro-inflammatory cytokines, including IL-6 and TNF-α, in the mice with CCl4-induced acute liver injury. Histological morphometry revealed a significant reduction in the necropoptic area in the injured livers following exosome therapy. Consistently, western blot analysis indicated marked elevations in hepatic expression of PCNA, c-Met, Ets-1, and HO-1 proteins after exosome treatment. Besides, the phosphorylation level of signaling mediator JNK was significantly increased, and that of p38 was restored by exosome therapy. Immunohistochemistry double staining confirmed nuclear Ets-1 expression and cytoplasmic localization of c-Met and HO-1 proteins. In vitro studies demonstrated that exosome treatment increased the proliferation of Clone-9 hepatocytes and protected them from CCl4-induced cytotoxicity. Kinase inhibition experiment indicated that the exosome-driven hepatoprotection might be mediated through the JNK pathway.

Conclusion: Exosome therapy activates the JNK signaling activation pathway as well as up-regulates Ets-1 and HO-1 expression, thereby protecting hepatocytes against hepatotoxin-induced cell death.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间充质干细胞衍生的外泌体通过 Ets-1 和血红素氧合酶-1 的上调缓解小鼠急性肝损伤
背景:间充质干细胞(MSCs)衍生的外泌体已被证实可促进多种动物疾病模型的组织再生。本研究探讨了外泌体处理对四氯化碳(CCl4)诱导的急性肝损伤的保护作用,并阐明了可能的内在机制:方法:给CCl4诱导的急性肝损伤雄性CD-1小鼠静脉注射从先前表征的人脐带间充质干细胞条件培养基中收集的外泌体。生化、组织学和分子参数被用来评估肝损伤的严重程度。大鼠肝细胞克隆-9细胞系被用来验证外泌体处理的分子变化:结果:外泌体治疗明显抑制了CCl4诱导的急性肝损伤小鼠血浆中的谷草转氨酶(AST)、谷丙转氨酶(ALT)和促炎细胞因子(包括IL-6和TNF-α)的水平。组织学形态测量显示,外泌体治疗后,损伤肝脏的坏死面积明显缩小。Western印迹分析表明,外泌体治疗后,肝脏中PCNA、c-Met、Ets-1和HO-1蛋白的表达明显升高。此外,信号介质JNK的磷酸化水平明显升高,而p38的磷酸化水平在外泌体治疗后得到恢复。免疫组化双重染色证实了Ets-1的核表达以及c-Met和HO-1蛋白的胞浆定位。体外研究表明,外泌体处理可增加克隆-9肝细胞的增殖,并保护其免受CCl4诱导的细胞毒性的影响。激酶抑制实验表明,外泌体驱动的肝脏保护作用可能是通过JNK通路介导的:结论:外泌体疗法激活了JNK信号激活通路,并上调了Ets-1和HO-1的表达,从而保护肝细胞免受肝毒素诱导的细胞死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current stem cell research & therapy
Current stem cell research & therapy CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
4.20
自引率
3.70%
发文量
197
审稿时长
>12 weeks
期刊介绍: Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.
期刊最新文献
Deciphering the Immunomodulatory Pathways of Mesenchymal Stem Cells Insights into Suture Stem Cells: Distributions, Characteristics, and Applications A Study on the Role of miR-126 in the Repair Process after Spinal Cord Injury Magnesium Regulates the Migration and Differentiation of NPMSCs via the Integrin Signaling Pathway Salvianolic Acid B Accelerates Osteoporotic Fracture Healing via LncRNA-MALAT1/miR-155-5p/HIF1A Axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1