Qoyama Noel Baito, Halmat M. Jaafar, Talar Ahmad Merza Mohammad
{"title":"Piperine suppresses inflammatory fibroblast-like synoviocytes derived from rheumatoid arthritis patients Via NF-κB inhibition","authors":"Qoyama Noel Baito, Halmat M. Jaafar, Talar Ahmad Merza Mohammad","doi":"10.1016/j.cellimm.2023.104752","DOIUrl":null,"url":null,"abstract":"<div><p>Rheumatoid Arthritis (RA) is a common autoimmune disease recognized by hyperplasia of synoviocytes and chronic joint inflammation. Activation of fibroblast-like synoviocytes (FLSs) is one of the main features of RA which can trigger inflammation leading to articular cartilage and joint destruction. Aberrant activation of NF-κB signaling cascade was found to be responsible for the high proliferation and defective apoptosis of FLSs and subsequent inflammation in RA. Piperine is a principal constituent of piper species frequently used as antitumor and anti-inflammatory natural compound. In this study we aimed to assess the anti-inflammatory effect of piperine on RA-FLS through NF-κB inhibition.</p><p>FLSs were isolated from 68 RA patients and 30 healthy controls and were exposed to piperine. The main assays were MTT assay, flow cytometric analysis, PI staining, reverse transcription-PCR (RT-PCR), and ELISA.</p><p>Results showed that piperine can induce the apoptosis and reduce the proliferation of RA-FLSs in vitro. Moreover, piperine directly reduced the phosphorylation of NF-kB and the expression of NF-κB target genes related to RA-FLSs proliferation (c-Myc and Cycline D1), apoptosis inhibition (Bcl2 and Bcl-xl) and inflammation (COX2, IL-1β, TNF-α,IL-6, CCL5 and CXCL10) while increasing the expression of apoptosis related ones (Bax) in vitro. Piperine also reduced the protein levels of cytokines and chemokines secreted by FLSs as a result of NF-κB inhibition.</p><p>In conclusion, our results provide evidence for the anti-inflammatory capacity of piperine through inhibition of NF-κB pathway in FLSs proposing this compound as a suitable alternative for chemical treatment of RA.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"391 ","pages":"Article 104752"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874923000916","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rheumatoid Arthritis (RA) is a common autoimmune disease recognized by hyperplasia of synoviocytes and chronic joint inflammation. Activation of fibroblast-like synoviocytes (FLSs) is one of the main features of RA which can trigger inflammation leading to articular cartilage and joint destruction. Aberrant activation of NF-κB signaling cascade was found to be responsible for the high proliferation and defective apoptosis of FLSs and subsequent inflammation in RA. Piperine is a principal constituent of piper species frequently used as antitumor and anti-inflammatory natural compound. In this study we aimed to assess the anti-inflammatory effect of piperine on RA-FLS through NF-κB inhibition.
FLSs were isolated from 68 RA patients and 30 healthy controls and were exposed to piperine. The main assays were MTT assay, flow cytometric analysis, PI staining, reverse transcription-PCR (RT-PCR), and ELISA.
Results showed that piperine can induce the apoptosis and reduce the proliferation of RA-FLSs in vitro. Moreover, piperine directly reduced the phosphorylation of NF-kB and the expression of NF-κB target genes related to RA-FLSs proliferation (c-Myc and Cycline D1), apoptosis inhibition (Bcl2 and Bcl-xl) and inflammation (COX2, IL-1β, TNF-α,IL-6, CCL5 and CXCL10) while increasing the expression of apoptosis related ones (Bax) in vitro. Piperine also reduced the protein levels of cytokines and chemokines secreted by FLSs as a result of NF-κB inhibition.
In conclusion, our results provide evidence for the anti-inflammatory capacity of piperine through inhibition of NF-κB pathway in FLSs proposing this compound as a suitable alternative for chemical treatment of RA.
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.