Predicting molecular mechanisms of hereditary diseases by using their tissue-selective manifestation.

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Systems Biology Pub Date : 2023-08-08 Epub Date: 2023-05-26 DOI:10.15252/msb.202211407
Eyal Simonovsky, Moran Sharon, Maya Ziv, Omry Mauer, Idan Hekselman, Juman Jubran, Ekaterina Vinogradov, Chanan M Argov, Omer Basha, Lior Kerber, Yuval Yogev, Ayellet V Segrè, Hae Kyung Im, Ohad Birk, Lior Rokach, Esti Yeger-Lotem
{"title":"Predicting molecular mechanisms of hereditary diseases by using their tissue-selective manifestation.","authors":"Eyal Simonovsky, Moran Sharon, Maya Ziv, Omry Mauer, Idan Hekselman, Juman Jubran, Ekaterina Vinogradov, Chanan M Argov, Omer Basha, Lior Kerber, Yuval Yogev, Ayellet V Segrè, Hae Kyung Im, Ohad Birk, Lior Rokach, Esti Yeger-Lotem","doi":"10.15252/msb.202211407","DOIUrl":null,"url":null,"abstract":"<p><p>How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed \"Tissue Risk Assessment of Causality by Expression\" (TRACE), a machine learning approach to predict genes that underlie tissue-selective diseases and selectivity-related features. TRACE utilized 4,744 biologically interpretable tissue-specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity-related features, the most common of which was previously overlooked. Next, we created a catalog of tissue-associated risks for 18,927 protein-coding genes (https://netbio.bgu.ac.il/trace/). As proof-of-concept, we prioritized candidate disease genes identified in 48 rare-disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":"19 8","pages":"e11407"},"PeriodicalIF":8.5000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407743/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15252/msb.202211407","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed "Tissue Risk Assessment of Causality by Expression" (TRACE), a machine learning approach to predict genes that underlie tissue-selective diseases and selectivity-related features. TRACE utilized 4,744 biologically interpretable tissue-specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity-related features, the most common of which was previously overlooked. Next, we created a catalog of tissue-associated risks for 18,927 protein-coding genes (https://netbio.bgu.ac.il/trace/). As proof-of-concept, we prioritized candidate disease genes identified in 48 rare-disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遗传疾病的组织选择性表现预测遗传疾病的分子机制。
广泛表达基因的畸变如何导致组织选择性遗传性疾病?以前回答这个问题的尝试仅限于测试一些候选机制。为了在更大范围内回答这个问题,我们开发了“通过表达因果关系的组织风险评估”(TRACE),这是一种机器学习方法,用于预测组织选择性疾病和选择性相关特征的基因。TRACE利用了从异构组学数据集推断的4,744个生物可解释的组织特异性基因特征。TRACE对1031种疾病基因的应用揭示了已知的和新的选择性相关特征,其中最常见的是以前被忽视的。接下来,我们创建了一个18927个蛋白质编码基因的组织相关风险目录(https://netbio.bgu.ac.il/trace/)。作为概念验证,我们在48例罕见病患者中确定了候选疾病基因的优先级。TRACE将已证实的疾病基因在患者候选基因中进行排序,明显优于通过基因约束或组织表达进行排序的基因优先排序方法。因此,组织选择性与机器学习相结合,增强了对遗传性疾病的遗传和临床理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
期刊最新文献
Understanding the biological processes of kidney carcinogenesis: an integrative multi-omics approach. Enhancers and genome conformation provide complex transcriptional control of a herpesviral gene. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Subcellular mRNA kinetic modeling reveals nuclear retention as rate-limiting. Identifying T-cell clubs by embracing the local harmony between TCR and gene expressions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1