Morphometric, Developmental, and Anti-Inflammatory Effects of Transamniotic Stem Cell Therapy (TRASCET) on the Fetal Heart and Lungs in a Model of Intrauterine Growth Restriction.
Ashlyn E Whitlock, Kamila Moskowitzova, Ina Kycia, David Zurakowski, Dario O Fauza
{"title":"Morphometric, Developmental, and Anti-Inflammatory Effects of Transamniotic Stem Cell Therapy (TRASCET) on the Fetal Heart and Lungs in a Model of Intrauterine Growth Restriction.","authors":"Ashlyn E Whitlock, Kamila Moskowitzova, Ina Kycia, David Zurakowski, Dario O Fauza","doi":"10.1089/scd.2023.0040","DOIUrl":null,"url":null,"abstract":"<p><p>Transamniotic stem cell therapy (TRASCET) with mesenchymal stem cells (MSCs) can attenuate placental inflammation and minimize intrauterine growth restriction (IUGR). We sought to determine whether MSC-based TRASCET could mitigate fetal cardiopulmonary effects of IUGR. Pregnant Sprague-Dawley dams were exposed to alternating 12-h hypoxia (10.5% O<sub>2</sub>) cycles in the last fourth of gestation. Their fetuses (<i>n</i> = 155) were divided into 4 groups. One group remained untreated (<i>n</i> = 42), while three groups received volume-matched intra-amniotic injections of either saline (sham; <i>n</i> = 34), or of syngeneic amniotic fluid-derived MSCs, either in their native state (TRASCET; <i>n</i> = 36) or \"primed\" by exposure to interferon-gamma and interleukin-1beta before administration in vivo (TRASCET-primed; <i>n</i> = 43). Normal fetuses served as additional controls (<i>n</i> = 30). Multiple morphometric and biochemical analyses were performed at term for select markers of cardiopulmonary development and inflammation previously shown to be affected by IUGR. Among survivors (75%; 117/155), fetal heart-to-body weight ratio was increased in both the sham and untreated groups (<i>P</i> < 0.001 for both) but normalized in the TRASCET and TRASCET-primed groups (<i>P</i> = 0.275, 0.069, respectively). Cardiac b-type natriuretic peptide levels were increased in all hypoxia groups compared with normal (<i>P</i> < 0.001), but significantly decreased from sham and untreated in both TRASCET groups (<i>P</i> < 0.0001-0.005). Heart tumor necrosis factor-alpha levels were significantly elevated in sham and TRASCET groups (<i>P</i> = 0.009, 0.002), but normalized in the untreated and TRASCET-primed groups (<i>P</i> = 0.256, 0.456). Lung transforming growth factor-beta levels were significantly increased in both sham and untreated groups (<i>P</i> < 0.001, 0.003), but normalized in both TRASCET groups (<i>P</i> = 0.567, 0.303). Similarly, lung endothelin-1 levels were elevated in sham and untreated groups (<i>P</i> < 0.001 for both), but normalized in both TRASCET groups (<i>P</i> = 0.367, 0.928). We conclude that TRASCET with MSCs decreases markers of fetal cardiac strain, insufficiency, and inflammation, as well as of pulmonary fibrosis and hypertension in the rodent model of IUGR.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2023.0040","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Transamniotic stem cell therapy (TRASCET) with mesenchymal stem cells (MSCs) can attenuate placental inflammation and minimize intrauterine growth restriction (IUGR). We sought to determine whether MSC-based TRASCET could mitigate fetal cardiopulmonary effects of IUGR. Pregnant Sprague-Dawley dams were exposed to alternating 12-h hypoxia (10.5% O2) cycles in the last fourth of gestation. Their fetuses (n = 155) were divided into 4 groups. One group remained untreated (n = 42), while three groups received volume-matched intra-amniotic injections of either saline (sham; n = 34), or of syngeneic amniotic fluid-derived MSCs, either in their native state (TRASCET; n = 36) or "primed" by exposure to interferon-gamma and interleukin-1beta before administration in vivo (TRASCET-primed; n = 43). Normal fetuses served as additional controls (n = 30). Multiple morphometric and biochemical analyses were performed at term for select markers of cardiopulmonary development and inflammation previously shown to be affected by IUGR. Among survivors (75%; 117/155), fetal heart-to-body weight ratio was increased in both the sham and untreated groups (P < 0.001 for both) but normalized in the TRASCET and TRASCET-primed groups (P = 0.275, 0.069, respectively). Cardiac b-type natriuretic peptide levels were increased in all hypoxia groups compared with normal (P < 0.001), but significantly decreased from sham and untreated in both TRASCET groups (P < 0.0001-0.005). Heart tumor necrosis factor-alpha levels were significantly elevated in sham and TRASCET groups (P = 0.009, 0.002), but normalized in the untreated and TRASCET-primed groups (P = 0.256, 0.456). Lung transforming growth factor-beta levels were significantly increased in both sham and untreated groups (P < 0.001, 0.003), but normalized in both TRASCET groups (P = 0.567, 0.303). Similarly, lung endothelin-1 levels were elevated in sham and untreated groups (P < 0.001 for both), but normalized in both TRASCET groups (P = 0.367, 0.928). We conclude that TRASCET with MSCs decreases markers of fetal cardiac strain, insufficiency, and inflammation, as well as of pulmonary fibrosis and hypertension in the rodent model of IUGR.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development