Region-Wise Brain Response Classification of ASD Children Using EEG and BiLSTM RNN.

IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Clinical EEG and Neuroscience Pub Date : 2023-09-01 DOI:10.1177/15500594211054990
Thanga Aarthy Manoharan, Menaka Radhakrishnan
{"title":"Region-Wise Brain Response Classification of ASD Children Using EEG and BiLSTM RNN.","authors":"Thanga Aarthy Manoharan,&nbsp;Menaka Radhakrishnan","doi":"10.1177/15500594211054990","DOIUrl":null,"url":null,"abstract":"<p><p><b>Abstract</b>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in sensory modulation. These sensory modulation deficits would ultimately lead them to difficulties in adaptive behavior and intellectual functioning. The purpose of this study was to observe changes in the nervous system with responses to auditory/visual and only audio stimuli in children with autism and typically developing (TD) through electroencephalography (EEG). In this study, 20 children with ASD and 20 children with TD were considered to investigate the difference in the neural dynamics. The neural dynamics could be understood by non-linear analysis of the EEG signal. In this research to reveal the underlying nonlinear EEG dynamics, recurrence quantification analysis (RQA) is applied. RQA measures were analyzed using various parameter changes in RQA computations. In this research, the cosine distance metric was considered due to its capability of information retrieval and the other distance metrics parameters are compared for identifying the best biomarker. Each computational combination of the RQA measure and the responding channel was analyzed and discussed. To classify ASD and TD, the resulting features from RQA were fed to the designed BiLSTM (bi-long short-term memory) network. The classification accuracy was tested channel-wise for each combination. T3 and T5 channels with neighborhood selection as FAN (fixed amount of nearest neighbors) and distance metric as cosine is considered as the best-suited combination to discriminate between ASD and TD with the classification accuracy of 91.86%, respectively.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":"54 5","pages":"461-471"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594211054990","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 6

AbstractAutism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in sensory modulation. These sensory modulation deficits would ultimately lead them to difficulties in adaptive behavior and intellectual functioning. The purpose of this study was to observe changes in the nervous system with responses to auditory/visual and only audio stimuli in children with autism and typically developing (TD) through electroencephalography (EEG). In this study, 20 children with ASD and 20 children with TD were considered to investigate the difference in the neural dynamics. The neural dynamics could be understood by non-linear analysis of the EEG signal. In this research to reveal the underlying nonlinear EEG dynamics, recurrence quantification analysis (RQA) is applied. RQA measures were analyzed using various parameter changes in RQA computations. In this research, the cosine distance metric was considered due to its capability of information retrieval and the other distance metrics parameters are compared for identifying the best biomarker. Each computational combination of the RQA measure and the responding channel was analyzed and discussed. To classify ASD and TD, the resulting features from RQA were fed to the designed BiLSTM (bi-long short-term memory) network. The classification accuracy was tested channel-wise for each combination. T3 and T5 channels with neighborhood selection as FAN (fixed amount of nearest neighbors) and distance metric as cosine is considered as the best-suited combination to discriminate between ASD and TD with the classification accuracy of 91.86%, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电和BiLSTM RNN的ASD儿童脑反应区域分类。
摘要自闭症谱系障碍是一种以感觉调节功能障碍为特征的神经发育障碍。这些感觉调节缺陷最终会导致他们在适应行为和智力功能方面出现困难。本研究目的是通过脑电图(EEG)观察自闭症和典型发育(TD)儿童在听觉/视觉和仅听觉刺激下神经系统的变化。本研究以20名ASD患儿和20名TD患儿为研究对象,探讨其神经动力学的差异。通过对脑电信号的非线性分析,可以理解脑电信号的神经动力学。在本研究中,应用递归量化分析(RQA)来揭示潜在的非线性脑电动力学。利用RQA计算中的各种参数变化对RQA度量进行了分析。在本研究中,考虑余弦距离度量,因为它的信息检索能力和其他距离度量参数进行比较,以确定最佳的生物标志物。对RQA度量和响应信道的各种计算组合进行了分析和讨论。为了对ASD和TD进行分类,RQA得到的特征被输入到设计的BiLSTM(双长短期记忆)网络中。对每个组合的分类精度进行了通道测试。以邻域选择为FAN (fixed amount of nearest neighbors),距离度量为余弦的T3和T5通道被认为是区分ASD和TD的最合适组合,分类准确率分别为91.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical EEG and Neuroscience
Clinical EEG and Neuroscience 医学-临床神经学
CiteScore
5.20
自引率
5.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.
期刊最新文献
Ikelos-RWA. Validation of an Automatic Tool to Quantify REM Sleep Without Atonia. Age-dependent Electroencephalogram Characteristics During Different Levels of Anesthetic Depth. The Clinical Utility of Finding Unexpected Subclinical Spikes Detected by High-Density EEG During Neurodiagnostic Investigations Comparative Analysis of LORETA Z Score Neurofeedback and Cognitive Rehabilitation on Quality of Life and Response Inhibition in Individuals with Opioid Addiction Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1