{"title":"The archerfish predictive C-start.","authors":"Stefan Schuster","doi":"10.1007/s00359-023-01658-2","DOIUrl":null,"url":null,"abstract":"<p><p>A very quick decision enables hunting archerfish to secure downed prey even when they are heavily outnumbered by competing other surface-feeding fish. Based exclusively on information that is taken briefly after the onset of prey motion, the fish select a rapid C-start that turns them right towards the later point of catch. Moreover, the C-start, and not later fin strokes, already lends the fish the speed needed to arrive at just the right time. The archerfish predictive C-starts are kinematically not distinguishable from escape C-starts made by the same individual and are among the fastest C-starts known in teleost fish. The start decisions allow the fish-for ballistically falling prey-to respond accurately to any combination of the initial variables of prey movement and for any position and orientation of the responding fish. The start decisions do not show a speed-accuracy tradeoff and their accuracy is buffered against substantial changes of environmental parameters. Here, I introduce key aspects of this high-speed decision that combines speed, complexity, and precision in an unusual way.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465633/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-023-01658-2","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
A very quick decision enables hunting archerfish to secure downed prey even when they are heavily outnumbered by competing other surface-feeding fish. Based exclusively on information that is taken briefly after the onset of prey motion, the fish select a rapid C-start that turns them right towards the later point of catch. Moreover, the C-start, and not later fin strokes, already lends the fish the speed needed to arrive at just the right time. The archerfish predictive C-starts are kinematically not distinguishable from escape C-starts made by the same individual and are among the fastest C-starts known in teleost fish. The start decisions allow the fish-for ballistically falling prey-to respond accurately to any combination of the initial variables of prey movement and for any position and orientation of the responding fish. The start decisions do not show a speed-accuracy tradeoff and their accuracy is buffered against substantial changes of environmental parameters. Here, I introduce key aspects of this high-speed decision that combines speed, complexity, and precision in an unusual way.
期刊介绍:
The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields:
- Neurobiology and neuroethology
- Sensory physiology and ecology
- Physiological and hormonal basis of behavior
- Communication, orientation, and locomotion
- Functional imaging and neuroanatomy
Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular.
Colour figures are free in print and online.