Improving the accuracy of GIPAW chemical shielding calculations with cluster and fragment corrections

IF 1.8 3区 化学 Q4 CHEMISTRY, PHYSICAL Solid state nuclear magnetic resonance Pub Date : 2022-12-01 DOI:10.1016/j.ssnmr.2022.101832
Joshua D. Hartman , James K. Harper
{"title":"Improving the accuracy of GIPAW chemical shielding calculations with cluster and fragment corrections","authors":"Joshua D. Hartman ,&nbsp;James K. Harper","doi":"10.1016/j.ssnmr.2022.101832","DOIUrl":null,"url":null,"abstract":"<div><p><span>Ab initio methods<span> for predicting NMR parameters in the solid state are an essential tool for assigning experimental spectra and play an increasingly important role in structural characterizations. Recently, a molecular correction (MC) technique has been developed which combines the strengths<span> of plane-wave methods (GIPAW) with single molecule calculations employing Gaussian basis sets. The GIPAW + MC method relies on a periodic calculation performed at a lower level of theory to model the crystalline environment. The GIPAW result is then corrected using a single molecule calculation performed at a higher level of theory. The success of the GIPAW + MC method in predicting a range of NMR parameters is a result of the highly local character of the tensors underlying the NMR observable. However, in applications involving strong intermolecular interactions we find that expanding the region treated at the higher level of theory more accurately captures local many-body contributions to the </span></span></span><span><math><mmultiscripts><mrow><mi>N</mi></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>15</mn></mrow></mmultiscripts></math></span> NMR chemical shielding (CS) tensor. We propose alternative corrections to GIPAW which capture interactions between adjacent molecules at a higher level of theory using either fragment or cluster-based calculations. Benchmark calculations performed on <span><math><mmultiscripts><mrow><mi>N</mi></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>15</mn></mrow></mmultiscripts></math></span> and <span><math><mmultiscripts><mrow><mi>C</mi></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>13</mn></mrow></mmultiscripts></math></span> data sets show that these advanced GIPAW-corrected calculations improve the accuracy of chemical shielding tensor predictions relative to existing methods. Specifically, cluster-based <span><math><mmultiscripts><mrow><mi>N</mi></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>15</mn></mrow></mmultiscripts></math></span> corrections show a 24% and 17% reduction in RMS error relative to GIPAW and GIPAW + MC calculations, respectively. Comparing the benchmark data sets using multiple computational models demonstrates that <span><math><mmultiscripts><mrow><mi>N</mi></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>15</mn></mrow></mmultiscripts></math></span> CS tensor calculations are significantly more sensitive to intermolecular interactions relative to <span><math><mmultiscripts><mrow><mi>C</mi></mrow><none></none><none></none><mprescripts></mprescripts><none></none><mrow><mn>13</mn></mrow></mmultiscripts></math></span><span>. However, fragment and cluster-based corrections that include direct hydrogen bond<span> partners are sufficient for optimizing the accuracy of GIPAW-corrected methods. Finally, GIPAW-corrected methods are applied to the particularly challenging NMR spectral assignment of guanosine<span> dihydrate which contains two guanosine molecules in the asymmetric unit.</span></span></span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"122 ","pages":"Article 101832"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204022000613","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Ab initio methods for predicting NMR parameters in the solid state are an essential tool for assigning experimental spectra and play an increasingly important role in structural characterizations. Recently, a molecular correction (MC) technique has been developed which combines the strengths of plane-wave methods (GIPAW) with single molecule calculations employing Gaussian basis sets. The GIPAW + MC method relies on a periodic calculation performed at a lower level of theory to model the crystalline environment. The GIPAW result is then corrected using a single molecule calculation performed at a higher level of theory. The success of the GIPAW + MC method in predicting a range of NMR parameters is a result of the highly local character of the tensors underlying the NMR observable. However, in applications involving strong intermolecular interactions we find that expanding the region treated at the higher level of theory more accurately captures local many-body contributions to the N15 NMR chemical shielding (CS) tensor. We propose alternative corrections to GIPAW which capture interactions between adjacent molecules at a higher level of theory using either fragment or cluster-based calculations. Benchmark calculations performed on N15 and C13 data sets show that these advanced GIPAW-corrected calculations improve the accuracy of chemical shielding tensor predictions relative to existing methods. Specifically, cluster-based N15 corrections show a 24% and 17% reduction in RMS error relative to GIPAW and GIPAW + MC calculations, respectively. Comparing the benchmark data sets using multiple computational models demonstrates that N15 CS tensor calculations are significantly more sensitive to intermolecular interactions relative to C13. However, fragment and cluster-based corrections that include direct hydrogen bond partners are sufficient for optimizing the accuracy of GIPAW-corrected methods. Finally, GIPAW-corrected methods are applied to the particularly challenging NMR spectral assignment of guanosine dihydrate which contains two guanosine molecules in the asymmetric unit.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过簇和片段校正提高GIPAW化学屏蔽计算的准确性
从头算方法预测固体核磁共振参数是分配实验光谱的重要工具,在结构表征中发挥着越来越重要的作用。近年来,一种将平面波方法(GIPAW)的优点与采用高斯基集的单分子计算相结合的分子校正技术得到了发展。GIPAW + MC方法依赖于在较低理论水平上进行的周期性计算来模拟晶体环境。然后使用在更高的理论水平上执行的单分子计算对GIPAW结果进行校正。GIPAW + MC方法在预测核磁共振参数范围方面的成功是核磁共振观测值下张量的高度局域性的结果。然而,在涉及强分子间相互作用的应用中,我们发现在更高的理论水平上扩展区域更准确地捕获局部多体对N15核磁共振化学屏蔽(CS)张量的贡献。我们提出了对GIPAW的替代修正,它使用片段或基于簇的计算在更高的理论水平上捕获相邻分子之间的相互作用。在N15和C13数据集上进行的基准计算表明,相对于现有方法,这些先进的gipaw校正计算提高了化学屏蔽张量预测的准确性。具体来说,与GIPAW和GIPAW + MC计算相比,基于聚类的N15修正分别显示了24%和17%的均数误差降低。使用多种计算模型比较基准数据集表明,相对于C13, N15 CS张量计算对分子间相互作用明显更敏感。然而,包括直接氢键伙伴在内的基于片段和簇的校正足以优化gipaw校正方法的准确性。最后,将gipaw校正方法应用于非对称单元中含有两个鸟苷分子的二水合物鸟苷的核磁共振谱分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
9.40%
发文量
42
审稿时长
72 days
期刊介绍: The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.
期刊最新文献
Solid-state NMR compositional analysis of sputum from people with cystic fibrosis Elucidating structure and metabolism of insect biomaterials by solid-state NMR Glucose hydrochar consists of linked phenol, furan, arene, alkyl, and ketone structures revealed by advanced solid-state nuclear magnetic resonance Cryogenic probe technology enables multidimensional solid-state NMR of the stratum corneum without isotope labeling High-resolution 2D solid-state NMR provides insights into nontuberculous mycobacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1