Age-differentiated incentives for adaptive behavior during epidemics produce oscillatory and chaotic dynamics.

IF 4.3 2区 生物学 PLoS Computational Biology Pub Date : 2023-09-05 eCollection Date: 2023-09-01 DOI:10.1371/journal.pcbi.1011217
Ronan F Arthur, May Levin, Alexandre Labrogere, Marcus W Feldman
{"title":"Age-differentiated incentives for adaptive behavior during epidemics produce oscillatory and chaotic dynamics.","authors":"Ronan F Arthur,&nbsp;May Levin,&nbsp;Alexandre Labrogere,&nbsp;Marcus W Feldman","doi":"10.1371/journal.pcbi.1011217","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneity in contact patterns, mortality rates, and transmissibility among and between different age classes can have significant effects on epidemic outcomes. Adaptive behavior in response to the spread of an infectious pathogen may give rise to complex epidemiological dynamics. Here we model an infectious disease in which adaptive behavior incentives, and mortality rates, can vary between two and three age classes. The model indicates that age-dependent variability in infection aversion can produce more complex epidemic dynamics at lower levels of pathogen transmissibility and that those at less risk of infection can still drive complexity in the dynamics of those at higher risk of infection. Policymakers should consider the interdependence of such heterogeneous groups when making decisions.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011217"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011217","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneity in contact patterns, mortality rates, and transmissibility among and between different age classes can have significant effects on epidemic outcomes. Adaptive behavior in response to the spread of an infectious pathogen may give rise to complex epidemiological dynamics. Here we model an infectious disease in which adaptive behavior incentives, and mortality rates, can vary between two and three age classes. The model indicates that age-dependent variability in infection aversion can produce more complex epidemic dynamics at lower levels of pathogen transmissibility and that those at less risk of infection can still drive complexity in the dynamics of those at higher risk of infection. Policymakers should consider the interdependence of such heterogeneous groups when making decisions.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流行病期间对适应行为的年龄差异激励产生振荡和混乱的动力学。
不同年龄段之间的接触模式、死亡率和传播性的异质性会对流行病的结果产生重大影响。应对传染性病原体传播的适应性行为可能会产生复杂的流行病学动态。在这里,我们对一种传染病进行了建模,其中适应性行为激励和死亡率可能在两到三个年龄段之间变化。该模型表明,感染厌恶的年龄依赖性变异性可以在病原体传播性较低的水平上产生更复杂的流行病动态,而感染风险较低的人群仍然可以推动感染风险较高人群动态的复杂性。决策者在做出决策时应该考虑到这些异质群体的相互依存性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology 生物-生化研究方法
CiteScore
7.10
自引率
4.70%
发文量
820
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
Real-time forecasting of COVID-19-related hospital strain in France using a non-Markovian mechanistic model. Ten simple rules for teaching an introduction to R Evolutionary analyses of intrinsically disordered regions reveal widespread signals of conservation. A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis. Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1