Ronan F Arthur, May Levin, Alexandre Labrogere, Marcus W Feldman
{"title":"Age-differentiated incentives for adaptive behavior during epidemics produce oscillatory and chaotic dynamics.","authors":"Ronan F Arthur, May Levin, Alexandre Labrogere, Marcus W Feldman","doi":"10.1371/journal.pcbi.1011217","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneity in contact patterns, mortality rates, and transmissibility among and between different age classes can have significant effects on epidemic outcomes. Adaptive behavior in response to the spread of an infectious pathogen may give rise to complex epidemiological dynamics. Here we model an infectious disease in which adaptive behavior incentives, and mortality rates, can vary between two and three age classes. The model indicates that age-dependent variability in infection aversion can produce more complex epidemic dynamics at lower levels of pathogen transmissibility and that those at less risk of infection can still drive complexity in the dynamics of those at higher risk of infection. Policymakers should consider the interdependence of such heterogeneous groups when making decisions.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011217"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011217","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneity in contact patterns, mortality rates, and transmissibility among and between different age classes can have significant effects on epidemic outcomes. Adaptive behavior in response to the spread of an infectious pathogen may give rise to complex epidemiological dynamics. Here we model an infectious disease in which adaptive behavior incentives, and mortality rates, can vary between two and three age classes. The model indicates that age-dependent variability in infection aversion can produce more complex epidemic dynamics at lower levels of pathogen transmissibility and that those at less risk of infection can still drive complexity in the dynamics of those at higher risk of infection. Policymakers should consider the interdependence of such heterogeneous groups when making decisions.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.