Neuroprotective Potential of Hydroalcoholic Extract of Centella asiatica Against 3-Nitropropionic Acid-Induced Huntington's Like Symptoms in Adult Zebrafish.
{"title":"Neuroprotective Potential of Hydroalcoholic Extract of <i>Centella asiatica</i> Against 3-Nitropropionic Acid-Induced Huntington's Like Symptoms in Adult Zebrafish.","authors":"Vishal Kumar, Charan Singh, Arti Singh","doi":"10.1089/rej.2022.0036","DOIUrl":null,"url":null,"abstract":"<p><p>Huntington's disease (HD) is an inherited neurodegenerative disease. 3-Nitropropionic acid (3-NP) causes increased reactive oxygen species production and neuroinflammation. <i>Centella asiatica</i> (CA) is a strong antioxidant. The aim of this study is to investigate the effect of hydroalcoholic extract of <i>C. asiatica</i> (HA-CA) on 3-NP-induced HD in adult zebrafish. Adult zebrafish (∼5-6 months old) weighing 470 to 530 mg was used and treated with 3-NP (5 mg/kg intraperitoneal [<i>i.p.</i>]). The animals received HA-CA (80 and 100 mg/L) daily for up to 28 days in water. Tetrabenazine (3 mg/kg <i>i.p.</i>) was used as a standard drug. We have done an open field test (for locomotor activity), a novel tank diving test (for anxiety), and a light and dark tank test (for memory), followed by biochemical analysis (acetyl-cholinesterase [AchEs], nitrite, lipid peroxidation [LPO], and glutathione [GSH]) and histopathology to further confirm memory dysfunctions. 3-NP-treated zebrafish exhibit reductions in body weight, progressive neuronal damage, cognition, and locomotor activity. The HA-CA group significantly reduced the 3-NP-induced increase in LPO, AchEs, and nitrite levels while decreasing GSH levels. Oral administration of HA-CA (80 or 100 mg/L) significantly reduces 3-NP-induced changes in body weight and behaviors, in addition to neuroinflammation in the brain by lowering tumor necrosis factor-α and interleukin-1β levels. Moreover, HA-CA significantly decreases the 3-NP-induced neuronal damage in the brain. HA-CA ameliorates neurotoxicity and neurobehavioral deficits in 3-NP-induced HD-like symptoms in adult zebrafish.</p>","PeriodicalId":20979,"journal":{"name":"Rejuvenation research","volume":"25 6","pages":"260-274"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rejuvenation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/rej.2022.0036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease. 3-Nitropropionic acid (3-NP) causes increased reactive oxygen species production and neuroinflammation. Centella asiatica (CA) is a strong antioxidant. The aim of this study is to investigate the effect of hydroalcoholic extract of C. asiatica (HA-CA) on 3-NP-induced HD in adult zebrafish. Adult zebrafish (∼5-6 months old) weighing 470 to 530 mg was used and treated with 3-NP (5 mg/kg intraperitoneal [i.p.]). The animals received HA-CA (80 and 100 mg/L) daily for up to 28 days in water. Tetrabenazine (3 mg/kg i.p.) was used as a standard drug. We have done an open field test (for locomotor activity), a novel tank diving test (for anxiety), and a light and dark tank test (for memory), followed by biochemical analysis (acetyl-cholinesterase [AchEs], nitrite, lipid peroxidation [LPO], and glutathione [GSH]) and histopathology to further confirm memory dysfunctions. 3-NP-treated zebrafish exhibit reductions in body weight, progressive neuronal damage, cognition, and locomotor activity. The HA-CA group significantly reduced the 3-NP-induced increase in LPO, AchEs, and nitrite levels while decreasing GSH levels. Oral administration of HA-CA (80 or 100 mg/L) significantly reduces 3-NP-induced changes in body weight and behaviors, in addition to neuroinflammation in the brain by lowering tumor necrosis factor-α and interleukin-1β levels. Moreover, HA-CA significantly decreases the 3-NP-induced neuronal damage in the brain. HA-CA ameliorates neurotoxicity and neurobehavioral deficits in 3-NP-induced HD-like symptoms in adult zebrafish.
期刊介绍:
Rejuvenation Research publishes cutting-edge, peer-reviewed research on rejuvenation therapies in the laboratory and the clinic. The Journal focuses on key explorations and advances that may ultimately contribute to slowing or reversing the aging process, and covers topics such as cardiovascular aging, DNA damage and repair, cloning, and cell immortalization and senescence.
Rejuvenation Research coverage includes:
Cell immortalization and senescence
Pluripotent stem cells
DNA damage/repair
Gene targeting, gene therapy, and genomics
Growth factors and nutrient supply/sensing
Immunosenescence
Comparative biology of aging
Tissue engineering
Late-life pathologies (cardiovascular, neurodegenerative and others)
Public policy and social context.