Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle.

IF 2.7 3区 医学 Q3 VIROLOGY Retrovirology Pub Date : 2023-04-07 DOI:10.1186/s12977-023-00619-6
Francesca Di Nunzio, Vladimir N Uversky, Andrew J Mouland
{"title":"Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle.","authors":"Francesca Di Nunzio, Vladimir N Uversky, Andrew J Mouland","doi":"10.1186/s12977-023-00619-6","DOIUrl":null,"url":null,"abstract":"<p><p>A rapidly evolving understanding of phase separation in the biological and physical sciences has led to the redefining of virus-engineered replication compartments in many viruses with RNA genomes. Condensation of viral, host and genomic and subgenomic RNAs can take place to evade the innate immunity response and to help viral replication. Divergent viruses prompt liquid-liquid phase separation (LLPS) to invade the host cell. During HIV replication there are several steps involving LLPS. In this review, we characterize the ability of individual viral and host partners that assemble into biomolecular condensates (BMCs). Of note, bioinformatic analyses predict models of phase separation in line with several published observations. Importantly, viral BMCs contribute to function in key steps retroviral replication. For example, reverse transcription takes place within nuclear BMCs, called HIV-MLOs while during late replication steps, retroviral nucleocapsid acts as a driver or scaffold to recruit client viral components to aid the assembly of progeny virions. Overall, LLPS during viral infections represents a newly described biological event now appreciated in the virology field, that can also be considered as an alternative pharmacological target to current drug therapies especially when viruses become resistant to antiviral treatment.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Retrovirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12977-023-00619-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A rapidly evolving understanding of phase separation in the biological and physical sciences has led to the redefining of virus-engineered replication compartments in many viruses with RNA genomes. Condensation of viral, host and genomic and subgenomic RNAs can take place to evade the innate immunity response and to help viral replication. Divergent viruses prompt liquid-liquid phase separation (LLPS) to invade the host cell. During HIV replication there are several steps involving LLPS. In this review, we characterize the ability of individual viral and host partners that assemble into biomolecular condensates (BMCs). Of note, bioinformatic analyses predict models of phase separation in line with several published observations. Importantly, viral BMCs contribute to function in key steps retroviral replication. For example, reverse transcription takes place within nuclear BMCs, called HIV-MLOs while during late replication steps, retroviral nucleocapsid acts as a driver or scaffold to recruit client viral components to aid the assembly of progeny virions. Overall, LLPS during viral infections represents a newly described biological event now appreciated in the virology field, that can also be considered as an alternative pharmacological target to current drug therapies especially when viruses become resistant to antiviral treatment.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物分子缩合物:深入了解HIV-1复制周期的早期和晚期步骤。
生物和物理科学中对相分离的理解迅速发展,导致许多具有RNA基因组的病毒中病毒工程复制区室的重新定义。病毒、宿主、基因组和亚基因组RNA的缩合可以发生,以逃避先天免疫反应并帮助病毒复制。分歧病毒促使液-液相分离(LLPS)侵入宿主细胞。在HIV复制过程中,有几个步骤涉及LLPS。在这篇综述中,我们描述了单个病毒和宿主伴侣组装成生物分子缩合物(BMC)的能力。值得注意的是,生物信息学分析预测了相分离的模型,这与一些已发表的观察结果一致。重要的是,病毒性骨髓基质细胞在逆转录病毒复制的关键步骤中发挥作用。例如,逆转录发生在被称为HIV MLO的核BMCs中,而在复制后期,逆转录病毒核衣壳充当驱动器或支架,招募客户病毒成分,以帮助组装子代病毒粒子。总的来说,病毒感染期间的LLPS代表了一种新描述的生物学事件,现在在病毒学领域受到重视,它也可以被视为当前药物治疗的替代药物靶点,尤其是当病毒对抗病毒治疗产生耐药性时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Retrovirology
Retrovirology 医学-病毒学
CiteScore
5.80
自引率
3.00%
发文量
24
审稿时长
>0 weeks
期刊介绍: Retrovirology is an open access, online journal that publishes stringently peer-reviewed, high-impact articles on host-pathogen interactions, fundamental mechanisms of replication, immune defenses, animal models, and clinical science relating to retroviruses. Retroviruses are pleiotropically found in animals. Well-described examples include avian, murine and primate retroviruses. Two human retroviruses are especially important pathogens. These are the human immunodeficiency virus, HIV, and the human T-cell leukemia virus, HTLV. HIV causes AIDS while HTLV-1 is the etiological agent for adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Retrovirology aims to cover comprehensively all aspects of human and animal retrovirus research.
期刊最新文献
A gut check: understanding the interplay of the gastrointestinal microbiome and the developing immune system towards the goal of pediatric HIV remission. High level of genomic divergence in orf-I p12 and hbz genes of HTLV-1 subtype-C in Central Australia. In situ analysis of neuronal injury and neuroinflammation during HIV-1 infection. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. Retroviral PBS-segment sequence and structure: Orchestrating early and late replication events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1