{"title":"A Small Sample Correction for Factor Score Regression.","authors":"Jasper Bogaert, Wen Wei Loh, Yves Rosseel","doi":"10.1177/00131644221105505","DOIUrl":null,"url":null,"abstract":"<p><p>Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error in the factor scores. The method of Croon (MOC) is a well-known bias correction technique. However, its standard implementation can render poor quality estimates in small samples (e.g. less than 100). This article aims to develop a small sample correction (SSC) that integrates two different modifications to the standard MOC. We conducted a simulation study to compare the empirical performance of (a) standard SEM, (b) the standard MOC, (c) naive FSR, and (d) the MOC with the proposed SSC. In addition, we assessed the robustness of the performance of the SSC in various models with a different number of predictors and indicators. The results showed that the MOC with the proposed SSC yielded smaller mean squared errors than SEM and the standard MOC in small samples and performed similarly to naive FSR. However, naive FSR yielded more biased estimates than the proposed MOC with SSC, by failing to account for measurement error in the factor scores.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"83 3","pages":"495-519"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177321/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221105505","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error in the factor scores. The method of Croon (MOC) is a well-known bias correction technique. However, its standard implementation can render poor quality estimates in small samples (e.g. less than 100). This article aims to develop a small sample correction (SSC) that integrates two different modifications to the standard MOC. We conducted a simulation study to compare the empirical performance of (a) standard SEM, (b) the standard MOC, (c) naive FSR, and (d) the MOC with the proposed SSC. In addition, we assessed the robustness of the performance of the SSC in various models with a different number of predictors and indicators. The results showed that the MOC with the proposed SSC yielded smaller mean squared errors than SEM and the standard MOC in small samples and performed similarly to naive FSR. However, naive FSR yielded more biased estimates than the proposed MOC with SSC, by failing to account for measurement error in the factor scores.
期刊介绍:
Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.