Central Mechanisms of Acetaminophen Hepatotoxicity: Mitochondrial Dysfunction by Protein Adducts and Oxidant Stress.

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Metabolism and Disposition Pub Date : 2024-07-16 DOI:10.1124/dmd.123.001279
Hartmut Jaeschke, Anup Ramachandran
{"title":"Central Mechanisms of Acetaminophen Hepatotoxicity: Mitochondrial Dysfunction by Protein Adducts and Oxidant Stress.","authors":"Hartmut Jaeschke, Anup Ramachandran","doi":"10.1124/dmd.123.001279","DOIUrl":null,"url":null,"abstract":"<p><p>Acetaminophen (APAP) is an analgesic and antipyretic drug used worldwide, which is safe at therapeutic doses. However, an overdose can induce liver injury and even liver failure. Mechanistic studies in mice beginning with the seminal papers published by B.B. Brodie's group in the 1970s have resulted in important insight into the pathophysiology. Although the metabolic activation of APAP with generation of a reactive metabolite, glutathione depletion, and protein adduct formation are critical initiating events, more recently, mitochondria have come into focus as an important target and decision point of cell death. This review provides a comprehensive overview of the induction of mitochondrial superoxide and peroxynitrite formation and its propagation through a mitogen-activated protein kinase cascade, the mitochondrial permeability transition pore opening caused by iron-catalyzed protein nitration, and the mitochondria-dependent nuclear DNA fragmentation. In addition, the role of adaptive mechanisms that can modulate the pathophysiology, including autophagy, mitophagy, nuclear erythroid 2 p45-related factor 2 activation, and mitochondrial biogenesis, are discussed. Importantly, it is outlined how the mechanisms elucidated in mice translate to human hepatocytes and APAP overdose patients, and how this mechanistic insight explains the mechanism of action of the clinically approved antidote <i>N</i>-acetylcysteine and led to the recent discovery of a novel compound, fomepizole, which is currently under clinical development. SIGNIFICANCE STATEMENT: Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in western countries. Extensive mechanistic research over the last several decades has revealed a central role of mitochondria in the pathophysiology of APAP hepatotoxicity. This review article provides a comprehensive discussion of a) mitochondrial protein adducts and oxidative/nitrosative stress, b) mitochondria-regulated nuclear DNA fragmentation, c) adaptive mechanisms to APAP-induced cellular stress, d) translation of cell death mechanisms to overdose patients, and e) mechanism-based antidotes against APAP-induced liver injury.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"712-721"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.123.001279","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Acetaminophen (APAP) is an analgesic and antipyretic drug used worldwide, which is safe at therapeutic doses. However, an overdose can induce liver injury and even liver failure. Mechanistic studies in mice beginning with the seminal papers published by B.B. Brodie's group in the 1970s have resulted in important insight into the pathophysiology. Although the metabolic activation of APAP with generation of a reactive metabolite, glutathione depletion, and protein adduct formation are critical initiating events, more recently, mitochondria have come into focus as an important target and decision point of cell death. This review provides a comprehensive overview of the induction of mitochondrial superoxide and peroxynitrite formation and its propagation through a mitogen-activated protein kinase cascade, the mitochondrial permeability transition pore opening caused by iron-catalyzed protein nitration, and the mitochondria-dependent nuclear DNA fragmentation. In addition, the role of adaptive mechanisms that can modulate the pathophysiology, including autophagy, mitophagy, nuclear erythroid 2 p45-related factor 2 activation, and mitochondrial biogenesis, are discussed. Importantly, it is outlined how the mechanisms elucidated in mice translate to human hepatocytes and APAP overdose patients, and how this mechanistic insight explains the mechanism of action of the clinically approved antidote N-acetylcysteine and led to the recent discovery of a novel compound, fomepizole, which is currently under clinical development. SIGNIFICANCE STATEMENT: Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in western countries. Extensive mechanistic research over the last several decades has revealed a central role of mitochondria in the pathophysiology of APAP hepatotoxicity. This review article provides a comprehensive discussion of a) mitochondrial protein adducts and oxidative/nitrosative stress, b) mitochondria-regulated nuclear DNA fragmentation, c) adaptive mechanisms to APAP-induced cellular stress, d) translation of cell death mechanisms to overdose patients, and e) mechanism-based antidotes against APAP-induced liver injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对乙酰氨基酚肝毒性的中心机制:由蛋白质加合物和氧化应激引起的线粒体功能障碍。
对乙酰氨基酚(APAP)是一种世界范围内使用的止痛解热药物,在治疗剂量下是安全的。然而,过量服用会导致肝损伤甚至肝功能衰竭。从20世纪70年代B.B. Brodie小组发表的开创性论文开始,对小鼠的机制研究导致了对病理生理学的重要见解。虽然APAP的代谢激活与反应性代谢物的产生、谷胱甘肽的消耗和蛋白质加合物的形成是关键的启动事件,但最近线粒体作为细胞死亡的重要靶点和决策点受到关注。本文综述了线粒体超氧化物和过氧亚硝酸盐形成的诱导及其通过丝裂原激活的蛋白激酶级联,铁催化的蛋白质硝化引起的线粒体通透性过渡孔打开和线粒体依赖的核DNA片段化的传播。此外,本文还讨论了自噬、线粒体自噬、Nrf2激活和线粒体生物发生等调节病理生理的适应性机制的作用。重要的是,本文概述了在小鼠中阐明的机制如何转化为人类肝细胞和APAP过量患者,以及这种机制如何解释临床批准的解毒剂n -乙酰半胱氨酸的作用机制,并导致最近发现的一种新化合物,目前正在临床开发中。对乙酰氨基酚(APAP)引起的肝损伤是西方国家最常见的急性肝衰竭原因。在过去的几十年里,广泛的机制研究揭示了线粒体在APAP肝毒性病理生理中的核心作用。这篇综述文章全面讨论了a)线粒体蛋白加合物和氧化/亚氧化应激,b)线粒体调节的核DNA断裂,c) apap诱导的细胞应激的适应机制,d)过量患者细胞死亡机制的翻译,以及e)基于机制的抗apap诱导的肝损伤的解毒剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
期刊最新文献
Absorption, Distribution, Metabolism, and Excretion of Icenticaftor (QBW251) in Healthy Male Volunteers at Steady State and In Vitro Phenotyping of Major Metabolites. Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites. CYP P450 and non-CYP P450 Drug Metabolizing Enzyme Families Exhibit Differential Sensitivities towards Proinflammatory Cytokine Modulation. Quantitative Prediction of Drug-Drug Interactions Caused by CYP3A Induction Using Endogenous Biomarker 4β-Hydroxycholesterol. Utility of Common In Vitro Systems for Predicting Circulating Metabolites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1