Axel De Nardin, Silvia Zottin, Claudio Piciarelli, Emanuela Colombi, Gian Luca Foresti
{"title":"Few-Shot Pixel-Precise Document Layout Segmentation via Dynamic Instance Generation and Local Thresholding.","authors":"Axel De Nardin, Silvia Zottin, Claudio Piciarelli, Emanuela Colombi, Gian Luca Foresti","doi":"10.1142/S0129065723500521","DOIUrl":null,"url":null,"abstract":"<p><p>Over the years, the humanities community has increasingly requested the creation of artificial intelligence frameworks to help the study of cultural heritage. Document Layout segmentation, which aims at identifying the different structural components of a document page, is a particularly interesting task connected to this trend, specifically when it comes to handwritten texts. While there are many effective approaches to this problem, they all rely on large amounts of data for the training of the underlying models, which is rarely possible in a real-world scenario, as the process of producing the ground truth segmentation task with the required precision to the pixel level is a very time-consuming task and often requires a certain degree of domain knowledge regarding the documents at hand. For this reason, in this paper, we propose an effective few-shot learning framework for document layout segmentation relying on two novel components, namely a dynamic instance generation and a segmentation refinement module. This approach is able of achieving performances comparable to the current state of the art on the popular Diva-HisDB dataset, while relying on just a fraction of the available data.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500521","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Over the years, the humanities community has increasingly requested the creation of artificial intelligence frameworks to help the study of cultural heritage. Document Layout segmentation, which aims at identifying the different structural components of a document page, is a particularly interesting task connected to this trend, specifically when it comes to handwritten texts. While there are many effective approaches to this problem, they all rely on large amounts of data for the training of the underlying models, which is rarely possible in a real-world scenario, as the process of producing the ground truth segmentation task with the required precision to the pixel level is a very time-consuming task and often requires a certain degree of domain knowledge regarding the documents at hand. For this reason, in this paper, we propose an effective few-shot learning framework for document layout segmentation relying on two novel components, namely a dynamic instance generation and a segmentation refinement module. This approach is able of achieving performances comparable to the current state of the art on the popular Diva-HisDB dataset, while relying on just a fraction of the available data.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.