Artificial intelligence for ocular oncology.

IF 3 2区 医学 Q1 OPHTHALMOLOGY Current Opinion in Ophthalmology Pub Date : 2023-09-01 DOI:10.1097/ICU.0000000000000982
Neslihan Dilruba Koseoglu, Zélia Maria Corrêa, T Y Alvin Liu
{"title":"Artificial intelligence for ocular oncology.","authors":"Neslihan Dilruba Koseoglu,&nbsp;Zélia Maria Corrêa,&nbsp;T Y Alvin Liu","doi":"10.1097/ICU.0000000000000982","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The aim of this article is to provide an update on the latest applications of deep learning (DL) and classical machine learning (ML) techniques to the detection and prognostication of intraocular and ocular surface malignancies.</p><p><strong>Recent findings: </strong>Most recent studies focused on using DL and classical ML techniques for prognostication purposes in patients with uveal melanoma (UM).</p><p><strong>Summary: </strong>DL has emerged as the leading ML technique for prognostication in ocular oncological conditions, particularly in UM. However, the application of DL may be limited by the relatively rarity of these conditions.</p>","PeriodicalId":50604,"journal":{"name":"Current Opinion in Ophthalmology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/06/cooph-34-437.PMC10399931.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ICU.0000000000000982","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of review: The aim of this article is to provide an update on the latest applications of deep learning (DL) and classical machine learning (ML) techniques to the detection and prognostication of intraocular and ocular surface malignancies.

Recent findings: Most recent studies focused on using DL and classical ML techniques for prognostication purposes in patients with uveal melanoma (UM).

Summary: DL has emerged as the leading ML technique for prognostication in ocular oncological conditions, particularly in UM. However, the application of DL may be limited by the relatively rarity of these conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
眼部肿瘤的人工智能。
综述目的:本文的目的是提供深度学习(DL)和经典机器学习(ML)技术在眼内和眼表恶性肿瘤的检测和预测中的最新应用。最新发现:最近的研究主要集中在使用DL和经典ML技术来预测葡萄膜黑色素瘤(UM)患者的预后。总结:DL已经成为预测眼部肿瘤的主要ML技术,特别是在UM中。然而,深度学习的应用可能会受到这些条件相对罕见的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
5.40%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Ophthalmology is an indispensable resource featuring key up-to-date and important advances in the field from around the world. With renowned guest editors for each section, every bimonthly issue of Current Opinion in Ophthalmology delivers a fresh insight into topics such as glaucoma, refractive surgery and corneal and external disorders. With ten sections in total, the journal provides a convenient and thorough review of the field and will be of interest to researchers, clinicians and other healthcare professionals alike.
期刊最新文献
Ocular toxicities associated with antibody drug conjugates. Ocular manifestations of juvenile Sjögren's disease. Immune recovery uveitis: an ocular manifestation in HIV/AIDS receiving treatment. Ocular involvement in Steven-Johnson syndrome/toxic epidermal necrolysis: recent insights into pathophysiology, biomarkers, and therapeutic strategies. Artificial intelligence applications in ophthalmic surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1