{"title":"Advances in microbial synthesis of bioplastic monomers.","authors":"Jie Liu, Jianmin Liu, Liang Guo, Jia Liu, Xiulai Chen, Liming Liu, Cong Gao","doi":"10.1016/bs.aambs.2022.05.002","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-based plastics production offers an alternative to the environmental problems posed by a significant reliance on fossil fuels. While dicarboxylic acids were essential bioplastic monomers, producing them on a large scale proved problematic. Recently, metabolic engineering has opened up interesting possibilities for producing dicarboxylic acids sustainably and efficiently. In this chapter, studies on the development of several dicarboxylic acid bioplastic monomers were presented. Furthermore, for different dicarboxylic acids, a variety of metabolic engineering strategies were highlighted, including improving the utilization rate of substrates, strengthening the catalytic efficiency of key enzymes, blocking branching pathways to balance metabolic flux, and improving cell physiological performance to promote biosynthesis. Finally, the remaining obstacles and solutions for building advanced dicarboxylic acid microbial systems were discussed.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"119 ","pages":"35-81"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2022.05.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-based plastics production offers an alternative to the environmental problems posed by a significant reliance on fossil fuels. While dicarboxylic acids were essential bioplastic monomers, producing them on a large scale proved problematic. Recently, metabolic engineering has opened up interesting possibilities for producing dicarboxylic acids sustainably and efficiently. In this chapter, studies on the development of several dicarboxylic acid bioplastic monomers were presented. Furthermore, for different dicarboxylic acids, a variety of metabolic engineering strategies were highlighted, including improving the utilization rate of substrates, strengthening the catalytic efficiency of key enzymes, blocking branching pathways to balance metabolic flux, and improving cell physiological performance to promote biosynthesis. Finally, the remaining obstacles and solutions for building advanced dicarboxylic acid microbial systems were discussed.
期刊介绍:
Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive.
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology.
Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.