Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death.

IF 5 3区 医学 Q2 IMMUNOLOGY Inflammation and Regeneration Pub Date : 2022-12-14 DOI:10.1186/s41232-022-00236-4
Hiroki Yamada, Yoshitaka Kase, Yuji Okano, Doyoon Kim, Maraku Goto, Satoshi Takahashi, Hideyuki Okano, Masahiro Toda
{"title":"Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death.","authors":"Hiroki Yamada,&nbsp;Yoshitaka Kase,&nbsp;Yuji Okano,&nbsp;Doyoon Kim,&nbsp;Maraku Goto,&nbsp;Satoshi Takahashi,&nbsp;Hideyuki Okano,&nbsp;Masahiro Toda","doi":"10.1186/s41232-022-00236-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Subarachnoid hemorrhage (SAH) is a fatal disease, with early brain injury (EBI) occurring within 72 h of SAH injury contributes to its poor prognosis. EBI is a complicated phenomenon involving multiple mechanisms. Although neuroinflammation has been shown to be important prognosis factor of EBI, whether neuroinflammation spreads throughout the cerebrum and the extent of its depth in the cerebral cortex remain unknown. Knowing how inflammation spreads throughout the cerebrum is also important to determine if anti-inflammatory agents are a future therapeutic strategy for EBI.</p><p><strong>Methods: </strong>In this study, we induced SAH in mice by injecting hematoma into prechiasmatic cistern and created models of mild to severe SAH. In sections of the mouse cerebrum, we investigated neuroinflammation and neuronal cell death in the cortex distal to the hematoma injection site, from anterior to posterior region 24 h after SAH injury.</p><p><strong>Results: </strong>Neuroinflammation caused by SAH spread to all layers of the cerebral cortex from the anterior to the posterior part of the cerebrum via the invasion of activated microglia, and neuronal cell death increased in correlation with neuroinflammation. This trend increased with the severity of the disease.</p><p><strong>Conclusions: </strong>Neuroinflammation caused by SAH had spread throughout the cerebrum, causing neuronal cell death. Considering that the cerebral cortex is responsible for long-term memory and movement, suppressing neuroinflammation in all layers of the cerebral cortex may improve the prognosis of patients with SAH.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749184/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41232-022-00236-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Background: Subarachnoid hemorrhage (SAH) is a fatal disease, with early brain injury (EBI) occurring within 72 h of SAH injury contributes to its poor prognosis. EBI is a complicated phenomenon involving multiple mechanisms. Although neuroinflammation has been shown to be important prognosis factor of EBI, whether neuroinflammation spreads throughout the cerebrum and the extent of its depth in the cerebral cortex remain unknown. Knowing how inflammation spreads throughout the cerebrum is also important to determine if anti-inflammatory agents are a future therapeutic strategy for EBI.

Methods: In this study, we induced SAH in mice by injecting hematoma into prechiasmatic cistern and created models of mild to severe SAH. In sections of the mouse cerebrum, we investigated neuroinflammation and neuronal cell death in the cortex distal to the hematoma injection site, from anterior to posterior region 24 h after SAH injury.

Results: Neuroinflammation caused by SAH spread to all layers of the cerebral cortex from the anterior to the posterior part of the cerebrum via the invasion of activated microglia, and neuronal cell death increased in correlation with neuroinflammation. This trend increased with the severity of the disease.

Conclusions: Neuroinflammation caused by SAH had spread throughout the cerebrum, causing neuronal cell death. Considering that the cerebral cortex is responsible for long-term memory and movement, suppressing neuroinflammation in all layers of the cerebral cortex may improve the prognosis of patients with SAH.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛛网膜下腔出血引发整个大脑皮层的神经炎症,导致神经元细胞死亡。
背景:蛛网膜下腔出血(SAH)是一种致死性疾病,早期脑损伤(EBI)发生在SAH损伤后72h内是其预后较差的原因之一。EBI是一个涉及多种机制的复杂现象。虽然神经炎症已被证明是EBI的重要预后因素,但神经炎症是否在整个大脑中扩散及其在大脑皮层的深度尚不清楚。了解炎症如何在整个大脑中扩散,对于确定抗炎药是否是EBI的未来治疗策略也很重要。方法:采用交叉前池注射血肿法诱导小鼠SAH,建立轻、重度SAH模型。在小鼠大脑切片中,我们研究了SAH损伤24小时后,从前到后区域,血肿注射部位远端皮层的神经炎症和神经元细胞死亡。结果:SAH引起的神经炎症通过激活的小胶质细胞的侵袭,从大脑前部到后部扩散到大脑皮层的所有层,神经元细胞死亡增加与神经炎症相关。这种趋势随着疾病的严重程度而增加。结论:SAH引起的神经炎症已遍及整个大脑,导致神经元细胞死亡。考虑到大脑皮层负责长期记忆和运动,抑制大脑皮层各层的神经炎症可能改善SAH患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
1.20%
发文量
45
审稿时长
11 weeks
期刊介绍: Inflammation and Regeneration is the official journal of the Japanese Society of Inflammation and Regeneration (JSIR). This journal provides an open access forum which covers a wide range of scientific topics in the basic and clinical researches on inflammation and regenerative medicine. It also covers investigations of infectious diseases, including COVID-19 and other emerging infectious diseases, which involve the inflammatory responses. Inflammation and Regeneration publishes papers in the following categories: research article, note, rapid communication, case report, review and clinical drug evaluation.
期刊最新文献
CX3CL1-CX3CR1 axis protects retinal ganglion cells by inhibiting microglia activation in a distal optic nerve trauma model Emilin2 marks the target region for mesenchymal cell accumulation in bone regeneration Role of cellular senescence in inflammation and regeneration Th22 is the effector cell of thymosin β15-induced hair regeneration in mice The gut-liver axis in hepatobiliary diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1