Targeting cytokines and signaling molecules related to immune pathways in atopic dermatitis: therapeutic implications and challenges

IF 6.9 3区 医学 Q1 CHEMISTRY, MEDICINAL Archives of Pharmacal Research Pub Date : 2022-12-03 DOI:10.1007/s12272-022-01421-2
Hyung-Ook Kim
{"title":"Targeting cytokines and signaling molecules related to immune pathways in atopic dermatitis: therapeutic implications and challenges","authors":"Hyung-Ook Kim","doi":"10.1007/s12272-022-01421-2","DOIUrl":null,"url":null,"abstract":"<div><p>Although atopic dermatitis (AD) is primarily a Th2-driven disease, it shows high heterogeneity with additional variable contributions of the Th22, Th17, and Th1 pathways, depending on the subtype of the disease. Expanding knowledge and understanding of AD pathogenesis has promoted the development of numerous novel therapeutics that target cytokines and their signaling molecules, representatively, Janus kinases, involved in the underlying immune pathways, resulting in therapeutic success and failure. The first FDA approval was for the targeted biologic dupilumab. Although this proved the therapeutic relevance of targeting Th2 cytokines in moderate-to-severe forms of AD, it did not treat all patients, necessitating additional targeted therapeutics that modulate other cytokine pathways to resolve AD in all subtypes. Three more recently FDA-approved targeted therapeutics and several others that have been developed represent different targeted approaches directed to the Th2, Th22, Th17, or Th1 pathways. This review summarizes the main features and clinical outcomes of various approaches targeting cytokines and signaling molecules in these different pathways in view of both successful and failed cases, with a discussion of their therapeutic implications. In future, AD should be treated with more specific treatments reflecting the disease heterogeneity, but the current development of targeted therapeutics has faced some challenges in this context, which is also discussed.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-022-01421-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 2

Abstract

Although atopic dermatitis (AD) is primarily a Th2-driven disease, it shows high heterogeneity with additional variable contributions of the Th22, Th17, and Th1 pathways, depending on the subtype of the disease. Expanding knowledge and understanding of AD pathogenesis has promoted the development of numerous novel therapeutics that target cytokines and their signaling molecules, representatively, Janus kinases, involved in the underlying immune pathways, resulting in therapeutic success and failure. The first FDA approval was for the targeted biologic dupilumab. Although this proved the therapeutic relevance of targeting Th2 cytokines in moderate-to-severe forms of AD, it did not treat all patients, necessitating additional targeted therapeutics that modulate other cytokine pathways to resolve AD in all subtypes. Three more recently FDA-approved targeted therapeutics and several others that have been developed represent different targeted approaches directed to the Th2, Th22, Th17, or Th1 pathways. This review summarizes the main features and clinical outcomes of various approaches targeting cytokines and signaling molecules in these different pathways in view of both successful and failed cases, with a discussion of their therapeutic implications. In future, AD should be treated with more specific treatments reflecting the disease heterogeneity, but the current development of targeted therapeutics has faced some challenges in this context, which is also discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
靶向细胞因子和信号分子相关的免疫途径在特应性皮炎:治疗意义和挑战
虽然特应性皮炎(AD)主要是一种th2驱动的疾病,但它显示出高度的异质性,根据疾病的亚型,Th22、Th17和Th1通路也有额外的可变贡献。对阿尔茨海默病发病机制的认识和理解不断扩大,促进了许多针对细胞因子及其信号分子的新疗法的发展,以Janus激酶为代表,参与潜在的免疫途径,从而导致治疗的成功和失败。FDA批准的首个药物是靶向生物药dupilumab。尽管这证明了靶向Th2细胞因子在中重度AD中的治疗相关性,但它并不能治疗所有患者,因此需要额外的靶向治疗,通过调节其他细胞因子途径来解决所有亚型的AD。最近fda批准的三种靶向治疗方法和其他几种已开发的靶向治疗方法分别针对Th2、Th22、Th17或Th1途径。本文综述了不同途径中针对细胞因子和信号分子的治疗方法的主要特点和临床结果,并对其治疗意义进行了讨论。未来,AD的治疗应更具有特异性,反映疾病的异质性,但目前靶向治疗的发展在此背景下面临一些挑战,本文也对此进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.40
自引率
9.00%
发文量
48
审稿时长
3.3 months
期刊介绍: Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.
期刊最新文献
Modulating versatile pathways using a cleavable PEG shell and EGFR-targeted nanoparticles to deliver CRISPR-Cas9 and docetaxel for triple-negative breast cancer inhibition. Ginsenoside Rg3 activates the immune function of CD8+ T cells via circFOXP1-miR-4477a-PD-L1 axis to induce ferroptosis in gallbladder cancer. Potential effects of a human milk oligosaccharide 6'-sialyllactose on angiotensin II-induced aortic aneurysm via p90RSK/TGF-β/SMAD2 signaling pathway. Akt-activated GSK3β inhibitory peptide effectively blocks tau hyperphosphorylation. Paeonia genus: a systematic review of active ingredients, pharmacological effects and mechanisms, and clinical applications for the treatment of cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1