Tony M Mertz, Christopher D Collins, Madeline Dennis, Margo Coxon, Steven A Roberts
{"title":"APOBEC-Induced Mutagenesis in Cancer.","authors":"Tony M Mertz, Christopher D Collins, Madeline Dennis, Margo Coxon, Steven A Roberts","doi":"10.1146/annurev-genet-072920-035840","DOIUrl":null,"url":null,"abstract":"<p><p>The initiation, progression, and relapse of cancers often result from mutations occurring within somatic cells. Consequently, processes that elevate mutation rates accelerate carcinogenesis and hinder the development of long-lasting therapeutics. Recent sequencing of human cancer genomes has identified patterns of mutations, termed mutation signatures, many of which correspond to specific environmentally induced and endogenous mutation processes. Some of the most frequently observed mutation signatures are caused by dysregulated activity of APOBECs, which deaminate cytidines in single-stranded DNA at specific sequence motifs causing C-to-T and C-to-G substitutions. In humans, APOBEC-generated genetic heterogeneity in tumor cells contributes to carcinogenesis, metastasis, and resistance to therapeutics. Here, we review the current understanding of APOBECs' role in cancer mutagenesis and impact on disease and the biological processes that influence APOBEC mutagenic capacity.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"56 ","pages":"229-252"},"PeriodicalIF":8.7000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-072920-035840","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 11
Abstract
The initiation, progression, and relapse of cancers often result from mutations occurring within somatic cells. Consequently, processes that elevate mutation rates accelerate carcinogenesis and hinder the development of long-lasting therapeutics. Recent sequencing of human cancer genomes has identified patterns of mutations, termed mutation signatures, many of which correspond to specific environmentally induced and endogenous mutation processes. Some of the most frequently observed mutation signatures are caused by dysregulated activity of APOBECs, which deaminate cytidines in single-stranded DNA at specific sequence motifs causing C-to-T and C-to-G substitutions. In humans, APOBEC-generated genetic heterogeneity in tumor cells contributes to carcinogenesis, metastasis, and resistance to therapeutics. Here, we review the current understanding of APOBECs' role in cancer mutagenesis and impact on disease and the biological processes that influence APOBEC mutagenic capacity.
期刊介绍:
The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.