Stable isotope patterns of German rivers with aspects on scales, continuity and network status.

IF 1.1 4区 环境科学与生态学 Q4 CHEMISTRY, INORGANIC & NUCLEAR Isotopes in Environmental and Health Studies Pub Date : 2022-08-01 DOI:10.1080/10256016.2022.2127702
Paul Koeniger, Christine Stumpp, Axel Schmidt
{"title":"Stable isotope patterns of German rivers with aspects on scales, continuity and network status.","authors":"Paul Koeniger,&nbsp;Christine Stumpp,&nbsp;Axel Schmidt","doi":"10.1080/10256016.2022.2127702","DOIUrl":null,"url":null,"abstract":"<p><p>In Germany, river monitoring for tritium started in the early 1970s. Today this monitoring network consists of 50 stations and includes stable isotopes. The stable isotope time series to the end of 2021 are at least four years and for some stations up to 30 years long. Daily river water samples were collected during an extraordinary dry season from October 2018 until end of January 2019 from six selected stations of the Rhine and five stations of the Elbe basin. The most dominating stable isotope effects in river water are the seasonal and altitude effects, but also a continental effect is visible. The isotopes indicate snow and ice melt contributions in the Rhine and Danube during the summer months and a consecutive dilution of these signals by mixing with tributary rivers. Close to the coasts in northern Germany, stable isotope patterns reflect influence of seawater and tides. Daily patterns during the dry season 2018/2019 surprisingly do not exhibit extreme changes but rather trends of enhanced groundwater contribution. Long-term continual data across scales are important for comparing and identifying hydrological processes in German river basins of different size and mean catchment altitudes, and highlight the benefits of a co-organized national network.</p>","PeriodicalId":14597,"journal":{"name":"Isotopes in Environmental and Health Studies","volume":"58 4-6","pages":"363-379"},"PeriodicalIF":1.1000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isotopes in Environmental and Health Studies","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10256016.2022.2127702","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 2

Abstract

In Germany, river monitoring for tritium started in the early 1970s. Today this monitoring network consists of 50 stations and includes stable isotopes. The stable isotope time series to the end of 2021 are at least four years and for some stations up to 30 years long. Daily river water samples were collected during an extraordinary dry season from October 2018 until end of January 2019 from six selected stations of the Rhine and five stations of the Elbe basin. The most dominating stable isotope effects in river water are the seasonal and altitude effects, but also a continental effect is visible. The isotopes indicate snow and ice melt contributions in the Rhine and Danube during the summer months and a consecutive dilution of these signals by mixing with tributary rivers. Close to the coasts in northern Germany, stable isotope patterns reflect influence of seawater and tides. Daily patterns during the dry season 2018/2019 surprisingly do not exhibit extreme changes but rather trends of enhanced groundwater contribution. Long-term continual data across scales are important for comparing and identifying hydrological processes in German river basins of different size and mean catchment altitudes, and highlight the benefits of a co-organized national network.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
德国河流稳定同位素格局的尺度、连续性和网络状态。
在德国,对河水中的氚进行监测始于20世纪70年代初。今天,这个监测网络由50个监测站组成,包括稳定同位素。到2021年底的稳定同位素时间序列至少为4年,有些台站长达30年。在2018年10月至2019年1月底的异常旱季期间,每天从莱茵河的六个选定站点和易北河流域的五个站点采集河流水样。河流中最主要的稳定同位素效应是季节效应和海拔效应,但也可见大陆效应。这些同位素显示了夏季莱茵河和多瑙河的冰雪融化贡献,以及这些信号因与支流河流混合而不断稀释。靠近德国北部海岸,稳定的同位素模式反映了海水和潮汐的影响。令人惊讶的是,2018/2019年旱季的日模式没有出现极端变化,而是呈现出地下水贡献增加的趋势。跨尺度的长期连续数据对于比较和识别不同大小和平均流域高度的德国河流流域的水文过程非常重要,并突出了共同组织的国家网络的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
21
审稿时长
3.0 months
期刊介绍: Isotopes in Environmental and Health Studies provides a unique platform for stable isotope studies in geological and life sciences, with emphasis on ecology. The international journal publishes original research papers, review articles, short communications, and book reviews relating to the following topics: -variations in natural isotope abundance (isotope ecology, isotope biochemistry, isotope hydrology, isotope geology) -stable isotope tracer techniques to follow the fate of certain substances in soil, water, plants, animals and in the human body -isotope effects and tracer theory linked with mathematical modelling -isotope measurement methods and equipment with respect to environmental and health research -diagnostic stable isotope application in medicine and in health studies -environmental sources of ionizing radiation and its effects on all living matter
期刊最新文献
In memoriam: Dr. Keith Alan Hobson, a pioneer of stable isotope ecology. Stable-isotope variability in daily precipitation: insights from a low-cost collector in SE England. Copper and its isotopes: a brief overview of its implications in geology, environmental system, and human health. Estimation of radiological health risks due to 226Ra, 232Th, and 40K in foods consumed in Iraqi Kurdistan Region. Microscale δ34S and δ18O variations of barite as an archive for fluid mixing and microbial sulphur metabolisms in igneous rock aquifers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1