Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells.
IF 1.8 3区 医学Q4 BIOCHEMISTRY & MOLECULAR BIOLOGYMolecular VisionPub Date : 2022-01-01
Zhennan Zhao, Yang Sun, Qi Fan, Yongxiang Jiang, Yi Lu
{"title":"Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells.","authors":"Zhennan Zhao, Yang Sun, Qi Fan, Yongxiang Jiang, Yi Lu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To clarify the effect of a previously identified single nucleotide polymorphism (SNP; rs76740365 G>A) in the exon-3 of the <i>alpha A-crystallin (CRYAA)</i> gene on the properties of <i>CRYAA</i> and to investigate its function in human lens epithelial cells (HLECs).</p><p><strong>Methods: </strong>The human recombinant wild-type and mutant <i>CRYAA</i> (E156K) were constructed, and the molecular weight was measured by mass spectrometry. The structural changes induced by E156K mutation were analyzed by UV circular dichroism spectra and intrinsic tryptophan fluorescence and were predicted using Schrödinger software. The chaperone-like ability of wild-type and E156K mutant <i>CRYAA</i> was invested against the heat-induced aggregation of βL-crystallin and the DTT-induced aggregation of insulin. HLECs expressing wild-type and mutated <i>CRYAA</i> were subjected to quantitative PCR (qPCR) and western blot. Cell apoptosis was determined using flow cytometry analysis, and the expression of apoptosis-related proteins were determined using western blot.</p><p><strong>Results: </strong>The mass spectrometric detection revealed that E156K mutation had no significant effect on the apparent molecular mass of the <i>CRYAA</i> oligomeric complex. Evaluation of the structures of the <i>CRYAA</i> indicated that E156K mutation did not significantly affect the secondary structures, while causing perturbations of the tertiary structure. The mutant <i>CRYAA</i> displayed an increase in chaperone-like activity, which might be related to the increase of the surface hydrophobicity. We also predicted that E156K mutation would induce a change from negatively charged surface to positively charged, which was the possible reason for the disturbance to the surface hydrophobicity. Transfection studies of HLECs revealed that the E156K mutant induced anti-apoptotic function in HLECs, which was possibly associated with the activation of the p-AKT signal pathway and downregulation of Casepase3.</p><p><strong>Conclusions: </strong>Taken together, our results for the first time showed that E156K mutation in <i>CRYAA</i> associated with ARC resulted in enhanced chaperone-like function by inducing its surface hydrophobicity, which was directly related to the activation of its anti-apoptotic function.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"28 ","pages":"317-330"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/85/70/mv-v28-317.PMC9603911.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To clarify the effect of a previously identified single nucleotide polymorphism (SNP; rs76740365 G>A) in the exon-3 of the alpha A-crystallin (CRYAA) gene on the properties of CRYAA and to investigate its function in human lens epithelial cells (HLECs).
Methods: The human recombinant wild-type and mutant CRYAA (E156K) were constructed, and the molecular weight was measured by mass spectrometry. The structural changes induced by E156K mutation were analyzed by UV circular dichroism spectra and intrinsic tryptophan fluorescence and were predicted using Schrödinger software. The chaperone-like ability of wild-type and E156K mutant CRYAA was invested against the heat-induced aggregation of βL-crystallin and the DTT-induced aggregation of insulin. HLECs expressing wild-type and mutated CRYAA were subjected to quantitative PCR (qPCR) and western blot. Cell apoptosis was determined using flow cytometry analysis, and the expression of apoptosis-related proteins were determined using western blot.
Results: The mass spectrometric detection revealed that E156K mutation had no significant effect on the apparent molecular mass of the CRYAA oligomeric complex. Evaluation of the structures of the CRYAA indicated that E156K mutation did not significantly affect the secondary structures, while causing perturbations of the tertiary structure. The mutant CRYAA displayed an increase in chaperone-like activity, which might be related to the increase of the surface hydrophobicity. We also predicted that E156K mutation would induce a change from negatively charged surface to positively charged, which was the possible reason for the disturbance to the surface hydrophobicity. Transfection studies of HLECs revealed that the E156K mutant induced anti-apoptotic function in HLECs, which was possibly associated with the activation of the p-AKT signal pathway and downregulation of Casepase3.
Conclusions: Taken together, our results for the first time showed that E156K mutation in CRYAA associated with ARC resulted in enhanced chaperone-like function by inducing its surface hydrophobicity, which was directly related to the activation of its anti-apoptotic function.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.