{"title":"Hydrogen Sulfide Responsive Phototherapy Agents: Design Strategies and Biological Applications","authors":"Musa Dirak, Sarp E. Turan and Safacan Kolemen*, ","doi":"10.1021/acsbiomedchemau.3c00028","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen sulfide (H<sub>2</sub>S) is one of the critical gasotransmitters, which play important roles in regular physiological processes, especially in vital signaling pathways. However, fluctuations in endogenous H<sub>2</sub>S concentration can be linked to serious health problems, such as neurodegenerative diseases, cancer, diabetes, inflammation, cardiovascular diseases, and hypertension. Thus, it has attracted a great deal of attention in therapeutic applications, specifically in the field of phototherapy. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two subclasses of phototherapy, which utilize either reactive oxygen species (ROS) or local temperature increase upon irradiation of a photosensitizer (PS) to realize the therapeutic action. Phototherapies offer unique advantages compared to conventional methods; thus, they are highly promising and popular. One of the design principles followed in new generation PSs is to build activity-based PSs, which stay inactive before getting activated by disease-associated stimuli. These activatable PSs dramatically improve the selectivity and efficacy of the therapy. In this review, we summarize small molecule and nanomaterial-based PDT and PTT agents that are activated selectively by H<sub>2</sub>S to initiate their cytotoxic effect. We incorporate single mode PDT and PTT agents along with synergistic and/or multimodal photosensitizers that can combine more than one therapeutic approach. Additionally, H<sub>2</sub>S-responsive theranostic agents, which offer therapy and imaging at the same time, are highlighted. Design approaches, working principles, and biological applications for each example are discussed in detail.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"3 4","pages":"305–321"},"PeriodicalIF":3.8000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.3c00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen sulfide (H2S) is one of the critical gasotransmitters, which play important roles in regular physiological processes, especially in vital signaling pathways. However, fluctuations in endogenous H2S concentration can be linked to serious health problems, such as neurodegenerative diseases, cancer, diabetes, inflammation, cardiovascular diseases, and hypertension. Thus, it has attracted a great deal of attention in therapeutic applications, specifically in the field of phototherapy. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two subclasses of phototherapy, which utilize either reactive oxygen species (ROS) or local temperature increase upon irradiation of a photosensitizer (PS) to realize the therapeutic action. Phototherapies offer unique advantages compared to conventional methods; thus, they are highly promising and popular. One of the design principles followed in new generation PSs is to build activity-based PSs, which stay inactive before getting activated by disease-associated stimuli. These activatable PSs dramatically improve the selectivity and efficacy of the therapy. In this review, we summarize small molecule and nanomaterial-based PDT and PTT agents that are activated selectively by H2S to initiate their cytotoxic effect. We incorporate single mode PDT and PTT agents along with synergistic and/or multimodal photosensitizers that can combine more than one therapeutic approach. Additionally, H2S-responsive theranostic agents, which offer therapy and imaging at the same time, are highlighted. Design approaches, working principles, and biological applications for each example are discussed in detail.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.