Subcellular elements responsive to the biomechanical activity of triple-negative breast cancer-derived small extracellular vesicles.

Q2 Biochemistry, Genetics and Molecular Biology Biomolecular Concepts Pub Date : 2022-01-01 DOI:10.1515/bmc-2022-0024
Beatrice Senigagliesi, Diana E Bedolla, Giovanni Birarda, Michele Zanetti, Marco Lazzarino, Lisa Vaccari, Pietro Parisse, Loredana Casalis
{"title":"Subcellular elements responsive to the biomechanical activity of triple-negative breast cancer-derived small extracellular vesicles.","authors":"Beatrice Senigagliesi, Diana E Bedolla, Giovanni Birarda, Michele Zanetti, Marco Lazzarino, Lisa Vaccari, Pietro Parisse, Loredana Casalis","doi":"10.1515/bmc-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract Triple-negative breast cancer (TNBC) stands out for its aggressive, fast spread, and highly metastatic behavior and for being unresponsive to the classical hormonal therapy. It is considered a disease with a poor prognosis and limited treatment options. Among the mechanisms that contribute to TNBC spreading, attention has been recently paid to small extracellular vesicles (sEVs), nano-sized vesicles that by transferring bioactive molecules to recipient cells play a crucial role in the intercellular communication among cancer, healthy cells, and tumor microenvironment. In particular, TNBC-derived sEVs have been shown to alter proliferation, metastasis, drug resistance, and biomechanical properties of target cells. To shed light on the molecular mechanisms involved in sEVs mediation of cell biomechanics, we investigated the effects of sEVs on the main subcellular players, i.e., cell membrane, cytoskeleton, and nuclear chromatin organization. Our results unveiled that TNBC-derived sEVs are able to promote the formation and elongation of cellular protrusions, soften the cell body, and induce chromatin decondensation in recipient cells. In particular, our data suggest that chromatin decondensation is the main cause of the global cell softening. The present study added new details and unveiled a novel mechanism of activity of the TNBC-derived sEVs, providing information for the efficient translation of sEVs to cancer theranostics.","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"13 1","pages":"322-333"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2022-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Triple-negative breast cancer (TNBC) stands out for its aggressive, fast spread, and highly metastatic behavior and for being unresponsive to the classical hormonal therapy. It is considered a disease with a poor prognosis and limited treatment options. Among the mechanisms that contribute to TNBC spreading, attention has been recently paid to small extracellular vesicles (sEVs), nano-sized vesicles that by transferring bioactive molecules to recipient cells play a crucial role in the intercellular communication among cancer, healthy cells, and tumor microenvironment. In particular, TNBC-derived sEVs have been shown to alter proliferation, metastasis, drug resistance, and biomechanical properties of target cells. To shed light on the molecular mechanisms involved in sEVs mediation of cell biomechanics, we investigated the effects of sEVs on the main subcellular players, i.e., cell membrane, cytoskeleton, and nuclear chromatin organization. Our results unveiled that TNBC-derived sEVs are able to promote the formation and elongation of cellular protrusions, soften the cell body, and induce chromatin decondensation in recipient cells. In particular, our data suggest that chromatin decondensation is the main cause of the global cell softening. The present study added new details and unveiled a novel mechanism of activity of the TNBC-derived sEVs, providing information for the efficient translation of sEVs to cancer theranostics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚细胞因子对三阴性乳腺癌来源的细胞外小泡的生物力学活性的响应。
三阴性乳腺癌(TNBC)具有侵袭性、快速扩散和高度转移性,并且对传统的激素治疗无反应。它被认为是一种预后不良且治疗选择有限的疾病。在促进TNBC扩散的机制中,最近关注的是细胞外小泡(sev),纳米级小泡通过将生物活性分子转移到受体细胞,在癌症、健康细胞和肿瘤微环境之间的细胞间通讯中起着至关重要的作用。特别是,tnbc衍生的sev已被证明可以改变靶细胞的增殖、转移、耐药性和生物力学特性。为了阐明sev介导细胞生物力学的分子机制,我们研究了sev对主要亚细胞参与者(即细胞膜、细胞骨架和核染色质组织)的影响。我们的研究结果揭示了tnbc衍生的sev能够促进细胞突起的形成和伸长,软化细胞体,并诱导受体细胞的染色质去浓缩。特别是,我们的数据表明,染色质去浓缩是整体细胞软化的主要原因。本研究增加了新的细节,揭示了tnbc衍生的sev的新的活性机制,为sev有效转化为癌症治疗提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecular Concepts
Biomolecular Concepts Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍: BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.
期刊最新文献
Anti-arthritic potential of crude sulfated polysaccharide from marine macroalgae Sargassum ilicifolium (Turner) C. Agardh: Regulation of cytokine cascade. Exploring cardiovascular implications in systemic lupus erythematosus: A holistic analysis of complications, diagnostic criteria, and therapeutic modalities, encompassing pharmacological and adjuvant approaches. Toxicity of bisphenol A and p-nitrophenol on tomato plants: Morpho-physiological, ionomic profile, and antioxidants/defense-related gene expression studies. A comprehensive review of the interaction between COVID-19 spike proteins with mammalian small and major heat shock proteins. Biochemical dynamics during postharvest: Highlighting the interplay of stress during storage and maturation of fresh produce.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1