Shuquan Rao, Ancha Baranova, Yao Yao, Jun Wang, Fuquan Zhang
{"title":"Genetic Relationships between Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, and Intelligence.","authors":"Shuquan Rao, Ancha Baranova, Yao Yao, Jun Wang, Fuquan Zhang","doi":"10.1159/000525411","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) commonly co-occur; both traits exert an influence on intelligence scores. Genetic relationships between these three traits are far from being clear.</p><p><strong>Methods: </strong>The summary results of genome-wide association studies of ADHD (20,183 cases and 35,191 controls), ASD (18,381 cases and 27,969 controls), and intelligence (269,867 participants) were used for the analyses. Local genetic correlation analysis and polygenic overlap analysis were used to explore the shared genetic components between ADHD, ASD, and intelligence. Mendelian randomization (MR) analysis was used to examine the causal associations between ADHD, ASD, and intelligence. A cross-trait meta-analysis was performed to identify pleiotropic genetic variants across the three traits.</p><p><strong>Results: </strong>Our results showed that intelligence has a positive and negative genetic correlation with ASD and ADHD, respectively, including three hub genomic regions showing correlated genetic effects across the three traits. Polygenic overlap analysis indicated that all the risk variants contributing to ADHD are overlapped with half of those for intelligence, and the majority of the shared variants have opposite effect directions between them. The majority of risk variants (80%) of ASD are overlapped with almost all the risk variants of intelligence (97%). Notably, some ASD/intelligence overlapping variants displayed opposing effects on these two conditions. MR analysis showed that the genetic liability to higher intelligence was associated with an increased risk for ASD (OR = 1.12) and a decreased risk for ADHD (OR = 0.78). Cross-trait meta-analyses identified 170 pleiotropic genomic loci across the three traits, including 12 novel loci. Functional analyses of the novel genes support their potential involvement in neurodevelopment.</p><p><strong>Conclusion: </strong>Our results suggest that ADHD is associated with inheriting a reduced set of low-intelligence alleles, whereas ASD results from incongruous effects from a mixture of high-intelligence and low-intelligence contributing alleles summed up with additional, ASD-specific risk variants not associated with intelligence.</p>","PeriodicalId":19239,"journal":{"name":"Neuropsychobiology","volume":"81 6","pages":"484-496"},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychobiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000525411","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 22
Abstract
Introduction: Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) commonly co-occur; both traits exert an influence on intelligence scores. Genetic relationships between these three traits are far from being clear.
Methods: The summary results of genome-wide association studies of ADHD (20,183 cases and 35,191 controls), ASD (18,381 cases and 27,969 controls), and intelligence (269,867 participants) were used for the analyses. Local genetic correlation analysis and polygenic overlap analysis were used to explore the shared genetic components between ADHD, ASD, and intelligence. Mendelian randomization (MR) analysis was used to examine the causal associations between ADHD, ASD, and intelligence. A cross-trait meta-analysis was performed to identify pleiotropic genetic variants across the three traits.
Results: Our results showed that intelligence has a positive and negative genetic correlation with ASD and ADHD, respectively, including three hub genomic regions showing correlated genetic effects across the three traits. Polygenic overlap analysis indicated that all the risk variants contributing to ADHD are overlapped with half of those for intelligence, and the majority of the shared variants have opposite effect directions between them. The majority of risk variants (80%) of ASD are overlapped with almost all the risk variants of intelligence (97%). Notably, some ASD/intelligence overlapping variants displayed opposing effects on these two conditions. MR analysis showed that the genetic liability to higher intelligence was associated with an increased risk for ASD (OR = 1.12) and a decreased risk for ADHD (OR = 0.78). Cross-trait meta-analyses identified 170 pleiotropic genomic loci across the three traits, including 12 novel loci. Functional analyses of the novel genes support their potential involvement in neurodevelopment.
Conclusion: Our results suggest that ADHD is associated with inheriting a reduced set of low-intelligence alleles, whereas ASD results from incongruous effects from a mixture of high-intelligence and low-intelligence contributing alleles summed up with additional, ASD-specific risk variants not associated with intelligence.
期刊介绍:
The biological approach to mental disorders continues to yield innovative findings of clinical importance, particularly if methodologies are combined. This journal collects high quality empirical studies from various experimental and clinical approaches in the fields of Biological Psychiatry, Biological Psychology and Neuropsychology. It features original, clinical and basic research in the fields of neurophysiology and functional imaging, neuropharmacology and neurochemistry, neuroendocrinology and neuroimmunology, genetics and their relationships with normal psychology and psychopathology. In addition, the reader will find studies on animal models of mental disorders and therapeutic interventions, and pharmacoelectroencephalographic studies. Regular reviews report new methodologic approaches, and selected case reports provide hints for future research. ''Neuropsychobiology'' is a complete record of strategies and methodologies employed to study the biological basis of mental functions including their interactions with psychological and social factors.