Toll-like receptor 4 promotes the inflammatory response in septic acute kidney injury by promoting p38 mitogen-activated protein kinase phosphorylation.
{"title":"Toll-like receptor 4 promotes the inflammatory response in septic acute kidney injury by promoting p38 mitogen-activated protein kinase phosphorylation.","authors":"Linlin Yue, Xin Liu, Chaoyu Wu, Jiying Lai, Jie Wang, Huifeng Zhong, Feng Chen","doi":"10.1007/s10863-023-09972-9","DOIUrl":null,"url":null,"abstract":"<p><p>Septic acute kidney injury (AKI) contributes to the mortality and morbidity of sepsis patients. Toll-like Receptor 4 (TLR4) has prominent roles in septic AKI. This study investigated the functions of TLR4 in septic AKI. A septic AKI mouse model was established by cecal ligation and puncture surgery. Mouse kidney function and kidney tissue lesion were examined using corresponding kits and H&E staining. The in vitro cell model of septic AKI was established by lipopolysaccharide induction. Cell viability, inflammatory factor (TNF-α, IL-6, IL-4, IL-1β, IL-18) levels, pyroptotic cell number changes, lactate dehydrogenase (LDH) activity, myeloperoxidase (MOP) concentration, and levels of pyroptosis-associated protein and MyD88, TRIF and p38 MAPK phosphorylation were determined by MTT, ELISA, FAM-FLICA Caspase-1 Detection kit, other corresponding kits, and Western blot. TLR4 was highly expressed in septic AKI mouse kidney tissues and human septic AKI cells. TLR4 knockdown alleviated kidney injury, increased cell viability, and reduced LDH activity and MPO concentration. TLR4 knockdown reduced cell pyroptosis by repressing p38 MAPK phosphorylation through MyD88/TRIF, suppressed pro-inflammatory factor (TNF-α, IL-6, IL-4, IL-1β, IL-18) levels, promoted anti-inflammatory factor (IL-4) level, and reduced inflammatory response, thus playing a protective role in septic AKI. Briefly, TLR4 promoted the inflammatory response in septic AKI by promoting p38 MAPK phosphorylation through MyD88/TRIF.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"353-363"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09972-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Septic acute kidney injury (AKI) contributes to the mortality and morbidity of sepsis patients. Toll-like Receptor 4 (TLR4) has prominent roles in septic AKI. This study investigated the functions of TLR4 in septic AKI. A septic AKI mouse model was established by cecal ligation and puncture surgery. Mouse kidney function and kidney tissue lesion were examined using corresponding kits and H&E staining. The in vitro cell model of septic AKI was established by lipopolysaccharide induction. Cell viability, inflammatory factor (TNF-α, IL-6, IL-4, IL-1β, IL-18) levels, pyroptotic cell number changes, lactate dehydrogenase (LDH) activity, myeloperoxidase (MOP) concentration, and levels of pyroptosis-associated protein and MyD88, TRIF and p38 MAPK phosphorylation were determined by MTT, ELISA, FAM-FLICA Caspase-1 Detection kit, other corresponding kits, and Western blot. TLR4 was highly expressed in septic AKI mouse kidney tissues and human septic AKI cells. TLR4 knockdown alleviated kidney injury, increased cell viability, and reduced LDH activity and MPO concentration. TLR4 knockdown reduced cell pyroptosis by repressing p38 MAPK phosphorylation through MyD88/TRIF, suppressed pro-inflammatory factor (TNF-α, IL-6, IL-4, IL-1β, IL-18) levels, promoted anti-inflammatory factor (IL-4) level, and reduced inflammatory response, thus playing a protective role in septic AKI. Briefly, TLR4 promoted the inflammatory response in septic AKI by promoting p38 MAPK phosphorylation through MyD88/TRIF.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.