Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems.

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Annual Review of Biomedical Engineering Pub Date : 2021-07-13 DOI:10.1146/annurev-bioeng-083120-111648
Payam E Farahani, Ellen H Reed, Evan J Underhill, Kazuhiro Aoki, Jared E Toettcher
{"title":"Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems.","authors":"Payam E Farahani,&nbsp;Ellen H Reed,&nbsp;Evan J Underhill,&nbsp;Kazuhiro Aoki,&nbsp;Jared E Toettcher","doi":"10.1146/annurev-bioeng-083120-111648","DOIUrl":null,"url":null,"abstract":"<p><p>Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The \"parts list\" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":12.8000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436267/pdf/nihms-1915991.pdf","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-083120-111648","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 20

Abstract

Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信号,解构:利用光遗传学来解剖和指导生物系统中的信息流。
细胞从环境中接收到大量的信息。它们如何对这些信息采取行动——通过迁移、表达基因或将信号传递给其他细胞——包含了整个生物学中发现的大部分调节和自我组织的复杂性。参与细胞信号传导的“部分列表”通常是很好的建立,但是这些部分如何一起工作来解码信号并产生适当的反应?这个基本问题正越来越多地通过光遗传学工具来解决:光敏蛋白使生物学家能够以高空间和时间精度操纵蛋白质的相互作用,定位和活性状态。在这篇综述中,我们总结了如何利用光遗传学来寻求这个问题的答案,概述了目前研究人员可用的光遗传学工具套件,并呼吁关注那些增加我们对工程生物学的理解和提高我们能力的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Use of Artificial Intelligence Techniques to Assist Individuals with Physical Disabilities. Critical Advances for Democratizing Ultrasound Diagnostics in Human and Veterinary Medicine. Mechanobiology of Hyaluronan: Connecting Biomechanics and Bioactivity in Musculoskeletal Tissues. Low-Field, Low-Cost, Point-of-Care Magnetic Resonance Imaging. 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1